
Heaps and trusses

Alberto Facchini
Università di Padova, Italy

NonCommutative Rings and their Applications, VIII

Lens, 28 August 2023

Heaps: an old notion

Heaps were already considered by:

(1) H. Prüfer, Theorie der Abelschen Gruppen. I.
Grundeigenschaften, Math. Z. 20 (1924), 165–187,

and

(2) R. Baer, Zur Einfhrung des Scharbegriffs, J. Reine Angew.
Math. 160 (1929), 199–207.

Trusses are a much more recent notion:

(3) T. Brzeziński, Trusses: between braces and rings, Trans. Amer.
Math. Soc. 372 (2019), no. 6, 4149–4176.

Heaps: an old notion

Heaps were already considered by:

(1) H. Prüfer, Theorie der Abelschen Gruppen. I.
Grundeigenschaften, Math. Z. 20 (1924), 165–187,

and

(2) R. Baer, Zur Einfhrung des Scharbegriffs, J. Reine Angew.
Math. 160 (1929), 199–207.

Trusses are a much more recent notion:

(3) T. Brzeziński, Trusses: between braces and rings, Trans. Amer.
Math. Soc. 372 (2019), no. 6, 4149–4176.

What I will present you today appears in:

(4) M. J. Arroyo Paniagua and A. Facchini, Heaps and trusses,
2023, available in arXiv:2308.00527

, and in

(5) T. Brzeziński, S. Mereta and B. Rybo lowicz, From pre-trusses
to skew braces, Publ. Mat. 66 (2022), no. 2, 683–714.

What I will present you today appears in:

(4) M. J. Arroyo Paniagua and A. Facchini, Heaps and trusses,
2023, available in arXiv:2308.00527, and in

(5) T. Brzeziński, S. Mereta and B. Rybo lowicz, From pre-trusses
to skew braces, Publ. Mat. 66 (2022), no. 2, 683–714.

Ternary operations

A set X endowed with a ternary operation p : X × X × X → X

(no identity is required to be satisfied, at the moment).

The pairs (X , p) form a variety of algebras in the sense of
Universal Algebra. Their morphisms f : (X , p)→ (X ′, p′) are the
mappings f : X → X ′ such that p′(f (x), f (y), f (z)) = f (p(x , y , z))
for every x , y , z ∈ X .

In particular, these algebras (X , p) are the objects of a category,
whose initial object is the empty set ∅ (with its unique ternary
operation), and whose terminal objects are the singletons (with
their unique ternary operation). We will denote by ∗ any such
algebra with one element.

Ternary operations

A set X endowed with a ternary operation p : X × X × X → X
(no identity is required to be satisfied, at the moment).

The pairs (X , p) form a variety of algebras in the sense of
Universal Algebra. Their morphisms f : (X , p)→ (X ′, p′) are the
mappings f : X → X ′ such that p′(f (x), f (y), f (z)) = f (p(x , y , z))
for every x , y , z ∈ X .

In particular, these algebras (X , p) are the objects of a category,
whose initial object is the empty set ∅ (with its unique ternary
operation), and whose terminal objects are the singletons (with
their unique ternary operation). We will denote by ∗ any such
algebra with one element.

Ternary operations

A set X endowed with a ternary operation p : X × X × X → X
(no identity is required to be satisfied, at the moment).

The pairs (X , p) form a variety of algebras in the sense of
Universal Algebra.

Their morphisms f : (X , p)→ (X ′, p′) are the
mappings f : X → X ′ such that p′(f (x), f (y), f (z)) = f (p(x , y , z))
for every x , y , z ∈ X .

In particular, these algebras (X , p) are the objects of a category,
whose initial object is the empty set ∅ (with its unique ternary
operation), and whose terminal objects are the singletons (with
their unique ternary operation). We will denote by ∗ any such
algebra with one element.

Ternary operations

A set X endowed with a ternary operation p : X × X × X → X
(no identity is required to be satisfied, at the moment).

The pairs (X , p) form a variety of algebras in the sense of
Universal Algebra. Their morphisms f : (X , p)→ (X ′, p′) are the
mappings f : X → X ′ such that p′(f (x), f (y), f (z)) = f (p(x , y , z))
for every x , y , z ∈ X .

In particular, these algebras (X , p) are the objects of a category,
whose initial object is the empty set ∅ (with its unique ternary
operation), and whose terminal objects are the singletons (with
their unique ternary operation). We will denote by ∗ any such
algebra with one element.

Ternary operations

A set X endowed with a ternary operation p : X × X × X → X
(no identity is required to be satisfied, at the moment).

The pairs (X , p) form a variety of algebras in the sense of
Universal Algebra. Their morphisms f : (X , p)→ (X ′, p′) are the
mappings f : X → X ′ such that p′(f (x), f (y), f (z)) = f (p(x , y , z))
for every x , y , z ∈ X .

In particular, these algebras (X , p) are the objects of a category,
whose initial object is the empty set ∅ (with its unique ternary
operation), and whose terminal objects are the singletons (with
their unique ternary operation). We will denote by ∗ any such
algebra with one element.

Mal’tsev operations.

Let p : X × X × X → X be a ternary operation on the set X .

We say that p is a Mal’tsev operation if p(x , x , y) = y and
p(x , y , y) = x for every x , y ∈ X .

It will be often convenient to replace the ternary operation p on a
set X with an indexed family { by | y ∈ X } of binary operations
by : X × X → X defined by by (x , z) = p(x , y , z) for every
x , y , z ∈ X . The family of binary operations by is indexed in X
itself.

Correspondingly, we get a family of magmas (= sets with a binary
operation) (X , by), which is again indexed in X itself.

We will also often use the notations [x , y , z] instead of p(x , y , z),
and x ·y z instead of by (x , z).

Mal’tsev operations.

Let p : X × X × X → X be a ternary operation on the set X .
We say that p is a Mal’tsev operation if p(x , x , y) = y and
p(x , y , y) = x for every x , y ∈ X .

It will be often convenient to replace the ternary operation p on a
set X with an indexed family { by | y ∈ X } of binary operations
by : X × X → X defined by by (x , z) = p(x , y , z) for every
x , y , z ∈ X . The family of binary operations by is indexed in X
itself.

Correspondingly, we get a family of magmas (= sets with a binary
operation) (X , by), which is again indexed in X itself.

We will also often use the notations [x , y , z] instead of p(x , y , z),
and x ·y z instead of by (x , z).

Mal’tsev operations.

Let p : X × X × X → X be a ternary operation on the set X .
We say that p is a Mal’tsev operation if p(x , x , y) = y and
p(x , y , y) = x for every x , y ∈ X .

It will be often convenient to replace the ternary operation p on a
set X with an indexed family { by | y ∈ X } of binary operations
by : X × X → X defined by by (x , z) = p(x , y , z) for every
x , y , z ∈ X .

The family of binary operations by is indexed in X
itself.

Correspondingly, we get a family of magmas (= sets with a binary
operation) (X , by), which is again indexed in X itself.

We will also often use the notations [x , y , z] instead of p(x , y , z),
and x ·y z instead of by (x , z).

Mal’tsev operations.

Let p : X × X × X → X be a ternary operation on the set X .
We say that p is a Mal’tsev operation if p(x , x , y) = y and
p(x , y , y) = x for every x , y ∈ X .

It will be often convenient to replace the ternary operation p on a
set X with an indexed family { by | y ∈ X } of binary operations
by : X × X → X defined by by (x , z) = p(x , y , z) for every
x , y , z ∈ X . The family of binary operations by is indexed in X
itself.

Correspondingly, we get a family of magmas (= sets with a binary
operation) (X , by), which is again indexed in X itself.

We will also often use the notations [x , y , z] instead of p(x , y , z),
and x ·y z instead of by (x , z).

Mal’tsev operations.

Let p : X × X × X → X be a ternary operation on the set X .
We say that p is a Mal’tsev operation if p(x , x , y) = y and
p(x , y , y) = x for every x , y ∈ X .

It will be often convenient to replace the ternary operation p on a
set X with an indexed family { by | y ∈ X } of binary operations
by : X × X → X defined by by (x , z) = p(x , y , z) for every
x , y , z ∈ X . The family of binary operations by is indexed in X
itself.

Correspondingly, we get a family of magmas

(= sets with a binary
operation) (X , by), which is again indexed in X itself.

We will also often use the notations [x , y , z] instead of p(x , y , z),
and x ·y z instead of by (x , z).

Mal’tsev operations.

Let p : X × X × X → X be a ternary operation on the set X .
We say that p is a Mal’tsev operation if p(x , x , y) = y and
p(x , y , y) = x for every x , y ∈ X .

It will be often convenient to replace the ternary operation p on a
set X with an indexed family { by | y ∈ X } of binary operations
by : X × X → X defined by by (x , z) = p(x , y , z) for every
x , y , z ∈ X . The family of binary operations by is indexed in X
itself.

Correspondingly, we get a family of magmas (= sets with a binary
operation) (X , by), which is again indexed in X itself.

We will also often use the notations [x , y , z] instead of p(x , y , z),
and x ·y z instead of by (x , z).

Mal’tsev operations.

Let p : X × X × X → X be a ternary operation on the set X .
We say that p is a Mal’tsev operation if p(x , x , y) = y and
p(x , y , y) = x for every x , y ∈ X .

It will be often convenient to replace the ternary operation p on a
set X with an indexed family { by | y ∈ X } of binary operations
by : X × X → X defined by by (x , z) = p(x , y , z) for every
x , y , z ∈ X . The family of binary operations by is indexed in X
itself.

Correspondingly, we get a family of magmas (= sets with a binary
operation) (X , by), which is again indexed in X itself.

We will also often use the notations [x , y , z] instead of p(x , y , z),
and x ·y z instead of by (x , z).

Mal’tsev operations.

Lemma
A ternary operation p on a set X is a Mal’tsev operation if and
only if, for the corresponding indexed family { by | y ∈ X } of
binary operations, the element y is a two-sided identity of the
magma (X , by) for every y ∈ X .

Notice that in a magma, that is, a set with a not-necessarily
associative operation, a two-sided identity, when it exists, is unique.

Mal’tsev operations.

Lemma
A ternary operation p on a set X is a Mal’tsev operation if and
only if, for the corresponding indexed family { by | y ∈ X } of
binary operations, the element y is a two-sided identity of the
magma (X , by) for every y ∈ X .

Notice that in a magma, that is, a set with a not-necessarily
associative operation, a two-sided identity, when it exists, is unique.

Commutative ternary operations.

What does “commutative” mean for a ternary operation p?

For a
binary operation · it means that x · z = z · x for all x , z ∈ X . Now
we have replaced the ternary operation p with a bunch of binary
operations ·y . Hence it is natural to say that a ternary operation p
on X is commutative if and only if all binary operations ·y , y ∈ X ,
are commutative. Therefore:

A ternary operation p on a set X is commutative if
p(x , y , z) = p(z , y , x) for every x , y , z ∈ X .

Commutative ternary operations.

What does “commutative” mean for a ternary operation p? For a
binary operation · it means that x · z = z · x for all x , z ∈ X . Now
we have replaced the ternary operation p with a bunch of binary
operations ·y . Hence it is natural to say that a ternary operation p
on X is commutative if and only if all binary operations ·y , y ∈ X ,
are commutative.

Therefore:

A ternary operation p on a set X is commutative if
p(x , y , z) = p(z , y , x) for every x , y , z ∈ X .

Commutative ternary operations.

What does “commutative” mean for a ternary operation p? For a
binary operation · it means that x · z = z · x for all x , z ∈ X . Now
we have replaced the ternary operation p with a bunch of binary
operations ·y . Hence it is natural to say that a ternary operation p
on X is commutative if and only if all binary operations ·y , y ∈ X ,
are commutative. Therefore:

A ternary operation p on a set X is commutative if
p(x , y , z) = p(z , y , x) for every x , y , z ∈ X .

Commutative ternary operations.

A ternary operation p on a set X is commutative if
p(x , y , z) = p(z , y , x) for every x , y , z ∈ X .

(This motivation sounds a little too naive... We will see later that
for heaps it is possible to define a notion of commutator of
congruences, and that a heap is commutative if and only if all its
congruences commute.

This is exactly the case of groups, for
instance.
For groups G , it is possible to define the commutator [M,N] of
any two normal subgroups M,N, of G and a group G is
commutative (abelian) if and only if [M,N] = 1 for all its normal
subgroups M,N.)

Commutative ternary operations.

A ternary operation p on a set X is commutative if
p(x , y , z) = p(z , y , x) for every x , y , z ∈ X .

(This motivation sounds a little too naive... We will see later that
for heaps it is possible to define a notion of commutator of
congruences, and that a heap is commutative if and only if all its
congruences commute. This is exactly the case of groups, for
instance.
For groups G , it is possible to define the commutator [M,N] of
any two normal subgroups M,N, of G and a group G is
commutative (abelian) if and only if [M,N] = 1 for all its normal
subgroups M,N.)

Associative ternary operations

What does “associative” mean for a ternary operation p?

For a binary operation · it means that x · (y · z) = (x · y) · z for all
x , y , z ∈ X . Now we have replaced the ternary operation p with a
bunch of binary operations ·y . Hence it is natural to say that a
ternary operation p on X is associative if and only if
(x ·y z) ·w u = x ·y (z ·w u) for every x , y , z ,w , u ∈ X . Therefore:

A ternary operation p on a set X is associative if
p(p(x , y , z),w , u) = p(x , y , p(z ,w , u)) for every x , y , z ,w , u ∈ X .

In particular, for y = w , we get that if a ternary operation p on a
set X is associative, then all the binary operations by are
associative, i.e., that all the magmas (X , by), y ∈ X , are
semigroups.

Associative ternary operations

What does “associative” mean for a ternary operation p?
For a binary operation · it means that x · (y · z) = (x · y) · z for all
x , y , z ∈ X . Now we have replaced the ternary operation p with a
bunch of binary operations ·y . Hence it is natural to say that a
ternary operation p on X is associative if and only if
(x ·y z) ·w u = x ·y (z ·w u) for every x , y , z ,w , u ∈ X .

Therefore:

A ternary operation p on a set X is associative if
p(p(x , y , z),w , u) = p(x , y , p(z ,w , u)) for every x , y , z ,w , u ∈ X .

In particular, for y = w , we get that if a ternary operation p on a
set X is associative, then all the binary operations by are
associative, i.e., that all the magmas (X , by), y ∈ X , are
semigroups.

Associative ternary operations

What does “associative” mean for a ternary operation p?
For a binary operation · it means that x · (y · z) = (x · y) · z for all
x , y , z ∈ X . Now we have replaced the ternary operation p with a
bunch of binary operations ·y . Hence it is natural to say that a
ternary operation p on X is associative if and only if
(x ·y z) ·w u = x ·y (z ·w u) for every x , y , z ,w , u ∈ X . Therefore:

A ternary operation p on a set X is associative if
p(p(x , y , z),w , u) = p(x , y , p(z ,w , u)) for every x , y , z ,w , u ∈ X .

In particular, for y = w , we get that if a ternary operation p on a
set X is associative, then all the binary operations by are
associative, i.e., that all the magmas (X , by), y ∈ X , are
semigroups.

Associative ternary operations

What does “associative” mean for a ternary operation p?
For a binary operation · it means that x · (y · z) = (x · y) · z for all
x , y , z ∈ X . Now we have replaced the ternary operation p with a
bunch of binary operations ·y . Hence it is natural to say that a
ternary operation p on X is associative if and only if
(x ·y z) ·w u = x ·y (z ·w u) for every x , y , z ,w , u ∈ X . Therefore:

A ternary operation p on a set X is associative if
p(p(x , y , z),w , u) = p(x , y , p(z ,w , u)) for every x , y , z ,w , u ∈ X .

In particular, for y = w , we get that if a ternary operation p on a
set X is associative, then all the binary operations by are
associative, i.e., that all the magmas (X , by), y ∈ X , are
semigroups.

Associative ternary operations

What does “associative” mean for a ternary operation p?
For a binary operation · it means that x · (y · z) = (x · y) · z for all
x , y , z ∈ X . Now we have replaced the ternary operation p with a
bunch of binary operations ·y . Hence it is natural to say that a
ternary operation p on X is associative if and only if
(x ·y z) ·w u = x ·y (z ·w u) for every x , y , z ,w , u ∈ X . Therefore:

A ternary operation p on a set X is associative if
p(p(x , y , z),w , u) = p(x , y , p(z ,w , u)) for every x , y , z ,w , u ∈ X .

In particular, for y = w , we get that if a ternary operation p on a
set X is associative, then all the binary operations by are
associative, i.e., that all the magmas (X , by), y ∈ X , are
semigroups.

Heaps

A set X with an associative Mal’tsev operation [−,−,−] is called
a heap.

A mapping f : (X , [−,−,−])→ (X ′, [−,−,−]) between two heaps
is a heap morphism if

f ([x , x ′, x ′′]) = [f (x), f (x ′), f (x ′′)]

for every x , x ′, x ′′ ∈ X .

The category of heaps will be denoted by Heap. In Heap, the
initial object is ∅ and the terminal object is ∗.

Heaps

A set X with an associative Mal’tsev operation [−,−,−] is called
a heap.

A mapping f : (X , [−,−,−])→ (X ′, [−,−,−]) between two heaps
is a heap morphism if

f ([x , x ′, x ′′]) = [f (x), f (x ′), f (x ′′)]

for every x , x ′, x ′′ ∈ X .

The category of heaps will be denoted by Heap. In Heap, the
initial object is ∅ and the terminal object is ∗.

Heaps

A set X with an associative Mal’tsev operation [−,−,−] is called
a heap.

A mapping f : (X , [−,−,−])→ (X ′, [−,−,−]) between two heaps
is a heap morphism if

f ([x , x ′, x ′′]) = [f (x), f (x ′), f (x ′′)]

for every x , x ′, x ′′ ∈ X .

The category of heaps will be denoted by Heap. In Heap, the
initial object is ∅ and the terminal object is ∗.

Heaps

Theorem
Let (X , p) be a non-empty heap. Then all the monoids (X , bx),
x ∈ X , are pair-wise isomorphic groups.

Any (X , bx) is a group because the inverse of any y ∈ X is [x , y , x].

The group isomorphisms (X , bx)→ (X , by) are the mappings
τ yx : (X , bx)→ (X , by) defined by τ yx (z) = [z , x , y] for every
x , y , z ∈ X .

A subset S of a heap is a subheap if [x , y , z] ∈ S for every
x , y , z ∈ S .

Heaps

Theorem
Let (X , p) be a non-empty heap. Then all the monoids (X , bx),
x ∈ X , are pair-wise isomorphic groups.

Any (X , bx) is a group because the inverse of any y ∈ X is [x , y , x].

The group isomorphisms (X , bx)→ (X , by) are the mappings
τ yx : (X , bx)→ (X , by) defined by τ yx (z) = [z , x , y] for every
x , y , z ∈ X .

A subset S of a heap is a subheap if [x , y , z] ∈ S for every
x , y , z ∈ S .

Heaps

Theorem
Let (X , p) be a non-empty heap. Then all the monoids (X , bx),
x ∈ X , are pair-wise isomorphic groups.

Any (X , bx) is a group because the inverse of any y ∈ X is [x , y , x].

The group isomorphisms (X , bx)→ (X , by) are the mappings
τ yx : (X , bx)→ (X , by) defined by τ yx (z) = [z , x , y] for every
x , y , z ∈ X .

A subset S of a heap is a subheap if [x , y , z] ∈ S for every
x , y , z ∈ S .

Heaps

Theorem
Let (X , p) be a non-empty heap. Then all the monoids (X , bx),
x ∈ X , are pair-wise isomorphic groups.

Any (X , bx) is a group because the inverse of any y ∈ X is [x , y , x].

The group isomorphisms (X , bx)→ (X , by) are the mappings
τ yx : (X , bx)→ (X , by) defined by τ yx (z) = [z , x , y] for every
x , y , z ∈ X .

A subset S of a heap is a subheap if [x , y , z] ∈ S for every
x , y , z ∈ S .

Example 1 (Brzeziński, Trans. Amer. Math. Soc., 2019)

Our “3-dimensional Euclidean geometrical real space” of
Newtonian Physics.

Its set E3 of points doesn’t have a natural
group structure (or a vector-space structure): the sum of two
points doesn’t have a natural meaning. But as soon as we fix a
point (an origin), we can define an addition using the
Parallelogram Rule, and we get an abelian group. In fact, we get a
3-dimensional vector space over the field of real numbers. Hence
E3 does not have a natural group structure, if we want it we need
the unnatural choice of an origin. But E3 does have a natural heap
structure: if A,B,C ∈ E3, we can define p(A,B,C) with the
Parallelogram Rule, so that A,B,C , p(A,B,C) are, orderly, the
vertex of a parallelogram, and in this way we get a heap (E3, p).

Example 1 (Brzeziński, Trans. Amer. Math. Soc., 2019)

Our “3-dimensional Euclidean geometrical real space” of
Newtonian Physics. Its set E3 of points doesn’t have a natural
group structure (or a vector-space structure): the sum of two
points doesn’t have a natural meaning.

But as soon as we fix a
point (an origin), we can define an addition using the
Parallelogram Rule, and we get an abelian group. In fact, we get a
3-dimensional vector space over the field of real numbers. Hence
E3 does not have a natural group structure, if we want it we need
the unnatural choice of an origin. But E3 does have a natural heap
structure: if A,B,C ∈ E3, we can define p(A,B,C) with the
Parallelogram Rule, so that A,B,C , p(A,B,C) are, orderly, the
vertex of a parallelogram, and in this way we get a heap (E3, p).

Example 1 (Brzeziński, Trans. Amer. Math. Soc., 2019)

Our “3-dimensional Euclidean geometrical real space” of
Newtonian Physics. Its set E3 of points doesn’t have a natural
group structure (or a vector-space structure): the sum of two
points doesn’t have a natural meaning. But as soon as we fix a
point (an origin), we can define an addition using the
Parallelogram Rule, and we get an abelian group. In fact, we get a
3-dimensional vector space over the field of real numbers.

Hence
E3 does not have a natural group structure, if we want it we need
the unnatural choice of an origin. But E3 does have a natural heap
structure: if A,B,C ∈ E3, we can define p(A,B,C) with the
Parallelogram Rule, so that A,B,C , p(A,B,C) are, orderly, the
vertex of a parallelogram, and in this way we get a heap (E3, p).

Example 1 (Brzeziński, Trans. Amer. Math. Soc., 2019)

Our “3-dimensional Euclidean geometrical real space” of
Newtonian Physics. Its set E3 of points doesn’t have a natural
group structure (or a vector-space structure): the sum of two
points doesn’t have a natural meaning. But as soon as we fix a
point (an origin), we can define an addition using the
Parallelogram Rule, and we get an abelian group. In fact, we get a
3-dimensional vector space over the field of real numbers. Hence
E3 does not have a natural group structure, if we want it we need
the unnatural choice of an origin.

But E3 does have a natural heap
structure: if A,B,C ∈ E3, we can define p(A,B,C) with the
Parallelogram Rule, so that A,B,C , p(A,B,C) are, orderly, the
vertex of a parallelogram, and in this way we get a heap (E3, p).

Example 1 (Brzeziński, Trans. Amer. Math. Soc., 2019)

Our “3-dimensional Euclidean geometrical real space” of
Newtonian Physics. Its set E3 of points doesn’t have a natural
group structure (or a vector-space structure): the sum of two
points doesn’t have a natural meaning. But as soon as we fix a
point (an origin), we can define an addition using the
Parallelogram Rule, and we get an abelian group. In fact, we get a
3-dimensional vector space over the field of real numbers. Hence
E3 does not have a natural group structure, if we want it we need
the unnatural choice of an origin. But E3 does have a natural heap
structure: if A,B,C ∈ E3, we can define p(A,B,C) with the
Parallelogram Rule, so that A,B,C , p(A,B,C) are, orderly, the
vertex of a parallelogram, and in this way we get a heap (E3, p).

Example 2

We can fix any line in the space, getting a subheap E1 of the
previous example E3, or any plane, getting a subheap E2 of E3.

Example 3

Fix any group G and define a ternary operation p on G setting
p(x , y , z) = xy−1z for every x , y , z ∈ G .

Then (G , p) is a heap.

Every non-empty heap is of this form, and there is a natural
functor of the category of groups into the categories of heaps.
Nevertheless these two categories are not equivalent, for instance
the category of heaps does not have a null object (the category of
groups and the category of heaps are not equivalent categories also
if we eliminate the empty heap from the objects of the category of
heaps).

Example 3

Fix any group G and define a ternary operation p on G setting
p(x , y , z) = xy−1z for every x , y , z ∈ G . Then (G , p) is a heap.

Every non-empty heap is of this form, and there is a natural
functor of the category of groups into the categories of heaps.
Nevertheless these two categories are not equivalent, for instance
the category of heaps does not have a null object (the category of
groups and the category of heaps are not equivalent categories also
if we eliminate the empty heap from the objects of the category of
heaps).

Example 3

Fix any group G and define a ternary operation p on G setting
p(x , y , z) = xy−1z for every x , y , z ∈ G . Then (G , p) is a heap.

Every non-empty heap is of this form, and there is a natural
functor of the category of groups into the categories of heaps.

Nevertheless these two categories are not equivalent, for instance
the category of heaps does not have a null object (the category of
groups and the category of heaps are not equivalent categories also
if we eliminate the empty heap from the objects of the category of
heaps).

Example 3

Fix any group G and define a ternary operation p on G setting
p(x , y , z) = xy−1z for every x , y , z ∈ G . Then (G , p) is a heap.

Every non-empty heap is of this form, and there is a natural
functor of the category of groups into the categories of heaps.
Nevertheless these two categories are not equivalent, for instance
the category of heaps does not have a null object (the category of
groups and the category of heaps are not equivalent categories also
if we eliminate the empty heap from the objects of the category of
heaps).

Normal subheaps

Lemma
The following conditions are equivalent for a non-empty subheap S
of a heap X :
(a) there exists e ∈ S such that for every x ∈ X and every s ∈ S
there exists t ∈ S such that

[x , e, s] = [t, e, x].

(b) For every x ∈ X and every e, s ∈ S there exists t ∈ S such
that [x , e, s] = [t, e, x].
(c) [[x , e, s], x , e] ∈ S for every x ∈ X and every e, s ∈ S .

A subheap S of a heap X is said to be a normal subheap if it is
non-empty and satisfies the equivalent conditions of the lemma.

Normal subheaps

Lemma
The following conditions are equivalent for a non-empty subheap S
of a heap X :
(a) there exists e ∈ S such that for every x ∈ X and every s ∈ S
there exists t ∈ S such that

[x , e, s] = [t, e, x].

(b) For every x ∈ X and every e, s ∈ S there exists t ∈ S such
that [x , e, s] = [t, e, x].
(c) [[x , e, s], x , e] ∈ S for every x ∈ X and every e, s ∈ S .

A subheap S of a heap X is said to be a normal subheap if it is
non-empty and satisfies the equivalent conditions of the lemma.

Normal subheaps

Corollary

The following conditions are equivalent for a subset S of a heap H:
(a) there exists e ∈ S such that S is a normal subgroup of (X , be).
(b) S is non-empty and S is a normal subgroup of (X , be) for
every e ∈ S .
(c) S is a normal subheap of X .

A remark

Some care is necessary here. We have chosen our terminology in
such a way that the empty set is a heap,

the empty subset is a
subheap of every heap, but normal subheaps are non-empty by
definition. As a consequence:

(a) Subheaps of a heap form a complete lattice (every
intersection of subheaps is a subheap).

(b) Congruences on a heap form a complete lattice (every
intersection of congruences is a congruence).

(c) Normal heaps of a heap do not form a lattice in general, but
only a partially ordered set, because the intersection of two normal
subheaps can be empty.

A congruence on a heap (X , [−,−,−]) is an equivalence relation ∼
on the set X such that [x , y , z] ∼ [x ′, y ′, z ′], for every
x , x ′, y , y ′, z , z ′ ∈ X such that x ∼ x ′, y ∼ y ′ and z ∼ z ′.

A remark

Some care is necessary here. We have chosen our terminology in
such a way that the empty set is a heap, the empty subset is a
subheap of every heap,

but normal subheaps are non-empty by
definition. As a consequence:

(a) Subheaps of a heap form a complete lattice (every
intersection of subheaps is a subheap).

(b) Congruences on a heap form a complete lattice (every
intersection of congruences is a congruence).

(c) Normal heaps of a heap do not form a lattice in general, but
only a partially ordered set, because the intersection of two normal
subheaps can be empty.

A congruence on a heap (X , [−,−,−]) is an equivalence relation ∼
on the set X such that [x , y , z] ∼ [x ′, y ′, z ′], for every
x , x ′, y , y ′, z , z ′ ∈ X such that x ∼ x ′, y ∼ y ′ and z ∼ z ′.

A remark

Some care is necessary here. We have chosen our terminology in
such a way that the empty set is a heap, the empty subset is a
subheap of every heap, but normal subheaps are non-empty by
definition.

As a consequence:
(a) Subheaps of a heap form a complete lattice (every

intersection of subheaps is a subheap).
(b) Congruences on a heap form a complete lattice (every

intersection of congruences is a congruence).
(c) Normal heaps of a heap do not form a lattice in general, but

only a partially ordered set, because the intersection of two normal
subheaps can be empty.

A congruence on a heap (X , [−,−,−]) is an equivalence relation ∼
on the set X such that [x , y , z] ∼ [x ′, y ′, z ′], for every
x , x ′, y , y ′, z , z ′ ∈ X such that x ∼ x ′, y ∼ y ′ and z ∼ z ′.

A remark

Some care is necessary here. We have chosen our terminology in
such a way that the empty set is a heap, the empty subset is a
subheap of every heap, but normal subheaps are non-empty by
definition. As a consequence:

(a) Subheaps of a heap form a complete lattice (every
intersection of subheaps is a subheap).

(b) Congruences on a heap form a complete lattice (every
intersection of congruences is a congruence).

(c) Normal heaps of a heap do not form a lattice in general, but
only a partially ordered set, because the intersection of two normal
subheaps can be empty.

A congruence on a heap (X , [−,−,−]) is an equivalence relation ∼
on the set X such that [x , y , z] ∼ [x ′, y ′, z ′], for every
x , x ′, y , y ′, z , z ′ ∈ X such that x ∼ x ′, y ∼ y ′ and z ∼ z ′.

A remark

Some care is necessary here. We have chosen our terminology in
such a way that the empty set is a heap, the empty subset is a
subheap of every heap, but normal subheaps are non-empty by
definition. As a consequence:

(a) Subheaps of a heap form a complete lattice (every
intersection of subheaps is a subheap).

(b) Congruences on a heap form a complete lattice (every
intersection of congruences is a congruence).

(c) Normal heaps of a heap do not form a lattice in general, but
only a partially ordered set, because the intersection of two normal
subheaps can be empty.

A congruence on a heap (X , [−,−,−]) is an equivalence relation ∼
on the set X such that [x , y , z] ∼ [x ′, y ′, z ′], for every
x , x ′, y , y ′, z , z ′ ∈ X such that x ∼ x ′, y ∼ y ′ and z ∼ z ′.

A remark

Some care is necessary here. We have chosen our terminology in
such a way that the empty set is a heap, the empty subset is a
subheap of every heap, but normal subheaps are non-empty by
definition. As a consequence:

(a) Subheaps of a heap form a complete lattice (every
intersection of subheaps is a subheap).

(b) Congruences on a heap form a complete lattice (every
intersection of congruences is a congruence).

(c) Normal heaps of a heap do not form a lattice in general, but
only a partially ordered set, because the intersection of two normal
subheaps can be empty.

A congruence on a heap (X , [−,−,−]) is an equivalence relation ∼
on the set X such that [x , y , z] ∼ [x ′, y ′, z ′], for every
x , x ′, y , y ′, z , z ′ ∈ X such that x ∼ x ′, y ∼ y ′ and z ∼ z ′.

A remark

Some care is necessary here. We have chosen our terminology in
such a way that the empty set is a heap, the empty subset is a
subheap of every heap, but normal subheaps are non-empty by
definition. As a consequence:

(a) Subheaps of a heap form a complete lattice (every
intersection of subheaps is a subheap).

(b) Congruences on a heap form a complete lattice (every
intersection of congruences is a congruence).

(c) Normal heaps of a heap do not form a lattice in general, but
only a partially ordered set, because the intersection of two normal
subheaps can be empty.

A congruence on a heap (X , [−,−,−]) is an equivalence relation ∼
on the set X such that [x , y , z] ∼ [x ′, y ′, z ′], for every
x , x ′, y , y ′, z , z ′ ∈ X such that x ∼ x ′, y ∼ y ′ and z ∼ z ′.

For example. . .

In a commutative heap all non-empty subheaps are normal.

Congruences and ideals

For a good algebraic structure (a group (G ,+,−, 0) or a ring
(R,+,−, 0)), there is a one-to-one correspondence
{ congruences } ←→ { equivalence classes of 0 } (=normal
subgroups of G , or ideals of R).

In the case of heaps, there is not
a zero, any element can be a zero, and therefore the situation
becomes { congruences } ←− { equivalence classes (of any
element)}

Congruences and ideals

For a good algebraic structure (a group (G ,+,−, 0) or a ring
(R,+,−, 0)), there is a one-to-one correspondence
{ congruences } ←→ { equivalence classes of 0 } (=normal
subgroups of G , or ideals of R). In the case of heaps, there is not
a zero, any element can be a zero, and therefore the situation
becomes { congruences } ←− { equivalence classes (of any
element)}

Congruences and ideals

There is an onto mapping { normal subheaps } → { congruences }.

An example

Consider the heap (Z, [−,−,−]) of integer numbers with
[a, b, c] = a− b + c.

The complete lattice of its subheaps is
{ a + bZ | a, b ∈ Z } ∪ {∅}. The set of its normal subheaps is
{ a + bZ | a, b ∈ Z }. Its congruences are the congruences ≡n

modulo n, and the complete lattice of congruence is {≡n| n ∈ N },
which is isomorphic to the lattice (N, |) with 0 as its greatest
element and 1 as its least element.

An example

Consider the heap (Z, [−,−,−]) of integer numbers with
[a, b, c] = a− b + c. The complete lattice of its subheaps is
{ a + bZ | a, b ∈ Z } ∪ {∅}.

The set of its normal subheaps is
{ a + bZ | a, b ∈ Z }. Its congruences are the congruences ≡n

modulo n, and the complete lattice of congruence is {≡n| n ∈ N },
which is isomorphic to the lattice (N, |) with 0 as its greatest
element and 1 as its least element.

An example

Consider the heap (Z, [−,−,−]) of integer numbers with
[a, b, c] = a− b + c. The complete lattice of its subheaps is
{ a + bZ | a, b ∈ Z } ∪ {∅}. The set of its normal subheaps is
{ a + bZ | a, b ∈ Z }.

Its congruences are the congruences ≡n

modulo n, and the complete lattice of congruence is {≡n| n ∈ N },
which is isomorphic to the lattice (N, |) with 0 as its greatest
element and 1 as its least element.

An example

Consider the heap (Z, [−,−,−]) of integer numbers with
[a, b, c] = a− b + c. The complete lattice of its subheaps is
{ a + bZ | a, b ∈ Z } ∪ {∅}. The set of its normal subheaps is
{ a + bZ | a, b ∈ Z }. Its congruences are the congruences ≡n

modulo n, and the complete lattice of congruence is {≡n| n ∈ N },
which is isomorphic to the lattice (N, |) with 0 as its greatest
element and 1 as its least element.

An example

There is an onto mapping { normal subheaps } → { congruences },
S 7→ ∼S , where x ∼S y if [x , y , s] ∈ S for every s ∈ S .

In our example (Z, [−,−,−]), that onto mapping is the
correspondence a + bZ 7→ congruence ≡|b| modulo |b|. This is an
onto mapping, but is not a bijection. Of course, a + bZ = c + dZ
if and only if |b| = |d | and a ≡|b| c . In the next proposition, we
will see that in order to get a one-to-one correspondence, that is, a
bijection, it suffices to fix an element e ∈ Z, and associate with
any normal subheap e + bZ containing e the congruence ≡|b|
modulo |b|.

An example

There is an onto mapping { normal subheaps } → { congruences },
S 7→ ∼S , where x ∼S y if [x , y , s] ∈ S for every s ∈ S .

In our example (Z, [−,−,−]), that onto mapping is the
correspondence a + bZ 7→ congruence ≡|b| modulo |b|. This is an
onto mapping, but is not a bijection. Of course, a + bZ = c + dZ
if and only if |b| = |d | and a ≡|b| c . In the next proposition, we
will see that in order to get a one-to-one correspondence, that is, a
bijection, it suffices to fix an element e ∈ Z, and associate with
any normal subheap e + bZ containing e the congruence ≡|b|
modulo |b|.

The situation for a generic heap (X , p) is the following:

Proposition

[Brzeziński] Let X be a heap and e be a fixed element of X . Then
there is a lattice isomorphism between the lattice of all congruences
on the heap X and the lattice of all normal subheaps of X that
contain e. It associates with any congruence ∼ the equivalence
class [e]∼ of e. Conversely, it associates with any normal subheap
S of X with e ∈ S the congruence ∼S on X defined, for every
x , y ∈ X , by x ∼S y if there exists s ∈ S such that [x , y , s] ∈ S .

For any two normal subheaps S ,T of a heap X , we have that
∼S ⊆ ∼T if and only if, for every x , y ∈ X and every s ∈ S such
that [x , y , s] ∈ S , there exists t ∈ T such that [x , y , t] ∈ T .

The situation for a generic heap (X , p) is the following:

Proposition

[Brzeziński] Let X be a heap and e be a fixed element of X . Then
there is a lattice isomorphism between the lattice of all congruences
on the heap X and the lattice of all normal subheaps of X that
contain e. It associates with any congruence ∼ the equivalence
class [e]∼ of e. Conversely, it associates with any normal subheap
S of X with e ∈ S the congruence ∼S on X defined, for every
x , y ∈ X , by x ∼S y if there exists s ∈ S such that [x , y , s] ∈ S .

For any two normal subheaps S ,T of a heap X , we have that
∼S ⊆ ∼T if and only if, for every x , y ∈ X and every s ∈ S such
that [x , y , s] ∈ S , there exists t ∈ T such that [x , y , t] ∈ T .

Congruences and normal subheaps

By the previous proposition the lattice of all congruences on a heap
X is isomorphic to the lattice of all normal subgroups of any of the
groups (X , bx).

In particular, the lattice of all congruences on a
heap is a complete modular lattice.

Theorem
Let X be a heap. On the set N (X) of all normal subheaps of X
define a pre-order � setting, for all M,N ∈ N (X), M � N if for
every x , y ∈ X and s ∈ M such that [x , y , s] ∈ M there exists
t ∈ N such that [x , y , t] ∈ N. Let ' be the equivalence relation on
N (X) associated to the pre-order �. Then the partially ordered
set N (X)/' is order isomorphic to the partially ordered set C(X)
of all congruences of the heap X .

Congruences and normal subheaps

By the previous proposition the lattice of all congruences on a heap
X is isomorphic to the lattice of all normal subgroups of any of the
groups (X , bx). In particular, the lattice of all congruences on a
heap is a complete modular lattice.

Theorem
Let X be a heap. On the set N (X) of all normal subheaps of X
define a pre-order � setting, for all M,N ∈ N (X), M � N if for
every x , y ∈ X and s ∈ M such that [x , y , s] ∈ M there exists
t ∈ N such that [x , y , t] ∈ N. Let ' be the equivalence relation on
N (X) associated to the pre-order �. Then the partially ordered
set N (X)/' is order isomorphic to the partially ordered set C(X)
of all congruences of the heap X .

Congruences and normal subheaps

By the previous proposition the lattice of all congruences on a heap
X is isomorphic to the lattice of all normal subgroups of any of the
groups (X , bx). In particular, the lattice of all congruences on a
heap is a complete modular lattice.

Theorem
Let X be a heap. On the set N (X) of all normal subheaps of X
define a pre-order � setting, for all M,N ∈ N (X), M � N if for
every x , y ∈ X and s ∈ M such that [x , y , s] ∈ M there exists
t ∈ N such that [x , y , t] ∈ N. Let ' be the equivalence relation on
N (X) associated to the pre-order �. Then the partially ordered
set N (X)/' is order isomorphic to the partially ordered set C(X)
of all congruences of the heap X .

Commutators of two congruences in a heap

Now let us consider the problem of determining a natural notion of
commutator for a heap.

Let R and S be two congruences on a
heap X , and let R ×X S be the set of all triples (x , y , z) ∈ X 3 such
that xRy and ySz . Notice that R ×X S is a subheap of X 3. A
canonical connector between R and S is the mapping

p : R ×X S → X

defined by p(x , y , z) = [x , y , z] for every (x , y , z) ∈ R ×X S ,
provided that xS [x , y , z] and [x , y , z]Rz for every
(x , y , z) ∈ R ×X S . The commutator of R and S is the smallest
congruence [R,S] on the heap X such that R ×X S → X/[R, S],
(x , y , z) 7→ [[x , y , z]][R,S], is a heap morphism. That is, for every
x1, y1, z1, x2, y2, z2, x3, y3, z3 ∈ X such that xiRyi and yiSzi for all
i = 1, 2, 3, one has that

[[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]] [R,S] [[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]].

Commutators of two congruences in a heap

Now let us consider the problem of determining a natural notion of
commutator for a heap. Let R and S be two congruences on a
heap X , and let R ×X S be the set of all triples (x , y , z) ∈ X 3 such
that xRy and ySz . Notice that R ×X S is a subheap of X 3. A
canonical connector between R and S is the mapping

p : R ×X S → X

defined by p(x , y , z) = [x , y , z] for every (x , y , z) ∈ R ×X S ,
provided that xS [x , y , z] and [x , y , z]Rz for every
(x , y , z) ∈ R ×X S .

The commutator of R and S is the smallest
congruence [R,S] on the heap X such that R ×X S → X/[R, S],
(x , y , z) 7→ [[x , y , z]][R,S], is a heap morphism. That is, for every
x1, y1, z1, x2, y2, z2, x3, y3, z3 ∈ X such that xiRyi and yiSzi for all
i = 1, 2, 3, one has that

[[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]] [R,S] [[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]].

Commutators of two congruences in a heap

Now let us consider the problem of determining a natural notion of
commutator for a heap. Let R and S be two congruences on a
heap X , and let R ×X S be the set of all triples (x , y , z) ∈ X 3 such
that xRy and ySz . Notice that R ×X S is a subheap of X 3. A
canonical connector between R and S is the mapping

p : R ×X S → X

defined by p(x , y , z) = [x , y , z] for every (x , y , z) ∈ R ×X S ,
provided that xS [x , y , z] and [x , y , z]Rz for every
(x , y , z) ∈ R ×X S . The commutator of R and S is the smallest
congruence [R,S] on the heap X such that R ×X S → X/[R, S],
(x , y , z) 7→ [[x , y , z]][R,S], is a heap morphism.

That is, for every
x1, y1, z1, x2, y2, z2, x3, y3, z3 ∈ X such that xiRyi and yiSzi for all
i = 1, 2, 3, one has that

[[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]] [R,S] [[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]].

Commutators of two congruences in a heap

Now let us consider the problem of determining a natural notion of
commutator for a heap. Let R and S be two congruences on a
heap X , and let R ×X S be the set of all triples (x , y , z) ∈ X 3 such
that xRy and ySz . Notice that R ×X S is a subheap of X 3. A
canonical connector between R and S is the mapping

p : R ×X S → X

defined by p(x , y , z) = [x , y , z] for every (x , y , z) ∈ R ×X S ,
provided that xS [x , y , z] and [x , y , z]Rz for every
(x , y , z) ∈ R ×X S . The commutator of R and S is the smallest
congruence [R,S] on the heap X such that R ×X S → X/[R, S],
(x , y , z) 7→ [[x , y , z]][R,S], is a heap morphism. That is, for every
x1, y1, z1, x2, y2, z2, x3, y3, z3 ∈ X such that xiRyi and yiSzi for all
i = 1, 2, 3, one has that

[[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]] [R,S] [[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]].

Commutators of two congruences in a heap

Let us compute the commutator of two congruences R,S on a
heap (X , p).

Theorem
Let R and S be two congruences on a heap (X , p). Fix an element
e in X . Let N := [e]R and M := [e]S be the normal subgroups of
the group (X , be) corresponding to the congruences R and S
respectively. Then the commutator [R,S] of R and S is the
congruence on (X , p) corresponding to the normal subgroup
[N,M] of the group (X , be).

In particular, a heap (X , p) is abelian if and only if [X ,X] = {e} in
the group (X , be), that is, if and only if the group (X , be) is
abelian. Since all the groups (X , by) are isomorphic, this is
equivalent to all the groups (X , by) being abelian, that is,
[x , y , z] = [z , y , x] for every x , y , z ∈ X .

Commutators of two congruences in a heap

Let us compute the commutator of two congruences R,S on a
heap (X , p).

Theorem
Let R and S be two congruences on a heap (X , p). Fix an element
e in X . Let N := [e]R and M := [e]S be the normal subgroups of
the group (X , be) corresponding to the congruences R and S
respectively. Then the commutator [R,S] of R and S is the
congruence on (X , p) corresponding to the normal subgroup
[N,M] of the group (X , be).

In particular, a heap (X , p) is abelian if and only if [X ,X] = {e} in
the group (X , be), that is, if and only if the group (X , be) is
abelian. Since all the groups (X , by) are isomorphic, this is
equivalent to all the groups (X , by) being abelian, that is,
[x , y , z] = [z , y , x] for every x , y , z ∈ X .

Commutators of two congruences in a heap

Let us compute the commutator of two congruences R,S on a
heap (X , p).

Theorem
Let R and S be two congruences on a heap (X , p). Fix an element
e in X . Let N := [e]R and M := [e]S be the normal subgroups of
the group (X , be) corresponding to the congruences R and S
respectively. Then the commutator [R,S] of R and S is the
congruence on (X , p) corresponding to the normal subgroup
[N,M] of the group (X , be).

In particular, a heap (X , p) is abelian if and only if [X ,X] = {e} in
the group (X , be), that is, if and only if the group (X , be) is
abelian. Since all the groups (X , by) are isomorphic, this is
equivalent to all the groups (X , by) being abelian, that is,
[x , y , z] = [z , y , x] for every x , y , z ∈ X .

Idempotent endomorphisms and semidirect products of
heaps

In any algebraic structure, idempotent endomorphisms are related
to semidirect products.

Proposition

Let X 6= ∅ be a heap, Y be a subheap of X , and ω a congruence
on X . The following conditions are equivalent:
(a) Y is a set of representatives of the equivalence classes of X
modulo ω, that is, Y ∩ [x]ω is a singleton for every x ∈ X .
(b) There exists an idempotent heap endomorphism of X whose
image is Y and whose kernel is ω.
(c) For every e ∈ Y , there exists an idempotent group
endomorphism of the group (X , be) whose image is the subgroup Y
of (X , be) and whose kernel is the normal subgroup [e]ω of (X , be).
(d) The mapping g : Y → X/ω, defined by g(y) = [y]ω for every
y ∈ Y , is a heap isomorphism.

Idempotent endomorphisms and semidirect products of
heaps

In any algebraic structure, idempotent endomorphisms are related
to semidirect products.

Proposition

Let X 6= ∅ be a heap, Y be a subheap of X , and ω a congruence
on X . The following conditions are equivalent:
(a) Y is a set of representatives of the equivalence classes of X
modulo ω, that is, Y ∩ [x]ω is a singleton for every x ∈ X .
(b) There exists an idempotent heap endomorphism of X whose
image is Y and whose kernel is ω.
(c) For every e ∈ Y , there exists an idempotent group
endomorphism of the group (X , be) whose image is the subgroup Y
of (X , be) and whose kernel is the normal subgroup [e]ω of (X , be).
(d) The mapping g : Y → X/ω, defined by g(y) = [y]ω for every
y ∈ Y , is a heap isomorphism.

Left near-trusses

A left near-truss (X , [−,−,−], ·) is a set X endowed with a ternary
operation [−,−,−] and a binary operation ·, such that
(X , [−,−,−]) is a heap, (X , ·) is a semigroup, and left
distributivity holds, that is,

x · [y , z ,w] = [x · y , x · z , x · w]

for every x , y , z ,w ∈ X .

Similarly for right near-trusses, where left
distributivity is replaced by right distributivity:
[y , z ,w] · x = [y · x , z · x ,w · x] for every x , y , z ,w ∈ X . Clearly,
the category of left near-trusses is isomorphic to the category of
right near-trusses, it suffices to associate to any left near-truss
(X , [−,−,−], ·) its opposite right near-truss (X , [−,−,−], ·op).

Left near-trusses

A left near-truss (X , [−,−,−], ·) is a set X endowed with a ternary
operation [−,−,−] and a binary operation ·, such that
(X , [−,−,−]) is a heap, (X , ·) is a semigroup, and left
distributivity holds, that is,

x · [y , z ,w] = [x · y , x · z , x · w]

for every x , y , z ,w ∈ X . Similarly for right near-trusses, where left
distributivity is replaced by right distributivity:
[y , z ,w] · x = [y · x , z · x ,w · x] for every x , y , z ,w ∈ X .

Clearly,
the category of left near-trusses is isomorphic to the category of
right near-trusses, it suffices to associate to any left near-truss
(X , [−,−,−], ·) its opposite right near-truss (X , [−,−,−], ·op).

Left near-trusses

A left near-truss (X , [−,−,−], ·) is a set X endowed with a ternary
operation [−,−,−] and a binary operation ·, such that
(X , [−,−,−]) is a heap, (X , ·) is a semigroup, and left
distributivity holds, that is,

x · [y , z ,w] = [x · y , x · z , x · w]

for every x , y , z ,w ∈ X . Similarly for right near-trusses, where left
distributivity is replaced by right distributivity:
[y , z ,w] · x = [y · x , z · x ,w · x] for every x , y , z ,w ∈ X . Clearly,
the category of left near-trusses is isomorphic to the category of
right near-trusses, it suffices to associate to any left near-truss
(X , [−,−,−], ·) its opposite right near-truss (X , [−,−,−], ·op).

Examples

(1) Let (X , [−,−,−]) be a heap and let

M(X) := { f | f : X → X }

be the set of all mappings from the set X to itself.

Define a
ternary operation [−,−,−] on M(X) setting, for every
f , g , h ∈ M(X), [f , g , h](x) = [f (x), g(x), h(x)] for all x ∈ X .
Then (M(X), [−,−,−]) is also a heap (it is the direct product of
|X | copies of the heap (X , [−,−,−])). Taking the composition of
mappings as the binary operation ·, M(X) becomes a right
near-truss.

(2) Let (N,+, ·) be a left near-ring. Define a ternary operation
[−,−,−] : N × N × N → N on N setting [x , y , z] = x − y + z for
every x , y , z ∈ N. Then (N, [−,−,−], ·) is a left near-truss.

Examples

(1) Let (X , [−,−,−]) be a heap and let

M(X) := { f | f : X → X }

be the set of all mappings from the set X to itself. Define a
ternary operation [−,−,−] on M(X) setting, for every
f , g , h ∈ M(X), [f , g , h](x) = [f (x), g(x), h(x)] for all x ∈ X .
Then (M(X), [−,−,−]) is also a heap (it is the direct product of
|X | copies of the heap (X , [−,−,−])).

Taking the composition of
mappings as the binary operation ·, M(X) becomes a right
near-truss.

(2) Let (N,+, ·) be a left near-ring. Define a ternary operation
[−,−,−] : N × N × N → N on N setting [x , y , z] = x − y + z for
every x , y , z ∈ N. Then (N, [−,−,−], ·) is a left near-truss.

Examples

(1) Let (X , [−,−,−]) be a heap and let

M(X) := { f | f : X → X }

be the set of all mappings from the set X to itself. Define a
ternary operation [−,−,−] on M(X) setting, for every
f , g , h ∈ M(X), [f , g , h](x) = [f (x), g(x), h(x)] for all x ∈ X .
Then (M(X), [−,−,−]) is also a heap (it is the direct product of
|X | copies of the heap (X , [−,−,−])). Taking the composition of
mappings as the binary operation ·, M(X) becomes a right
near-truss.

(2) Let (N,+, ·) be a left near-ring. Define a ternary operation
[−,−,−] : N × N × N → N on N setting [x , y , z] = x − y + z for
every x , y , z ∈ N. Then (N, [−,−,−], ·) is a left near-truss.

Examples

(1) Let (X , [−,−,−]) be a heap and let

M(X) := { f | f : X → X }

be the set of all mappings from the set X to itself. Define a
ternary operation [−,−,−] on M(X) setting, for every
f , g , h ∈ M(X), [f , g , h](x) = [f (x), g(x), h(x)] for all x ∈ X .
Then (M(X), [−,−,−]) is also a heap (it is the direct product of
|X | copies of the heap (X , [−,−,−])). Taking the composition of
mappings as the binary operation ·, M(X) becomes a right
near-truss.

(2) Let (N,+, ·) be a left near-ring. Define a ternary operation
[−,−,−] : N × N × N → N on N setting [x , y , z] = x − y + z for
every x , y , z ∈ N. Then (N, [−,−,−], ·) is a left near-truss.

Examples

(3) Let (B, ∗, ◦) be a left skew brace. Define a ternary operation
[−,−,−] : B × B × B → B on B setting [x , y , z] = x ∗ (y−∗) ∗ z
for every x , y , z ∈ B. Then (B, [−,−,−], ◦) is a left near-truss.

Examples

The right near-truss M(X) of Example (1) is particularly
interesting because:

Theorem
Every right near-truss is isomorphic to a subnear-truss of M(X) for
some heap X .

Lemma
Let (X , [−,−,−], ·) be a left near-truss and y be a fixed element
of X .
(a) If y is a right zero for the semigroup (X , ·) (that is, xy = y for
every x ∈ X), then (X , by , ·) is a left near-ring.
(b) If (X , ·) is a group and y is its identity, then (X , by , ·) is a left
skew brace.

Trusses, endomorphism trusses

A left truss (X , [−,−,−], ◦) is a left near-truss for which the heap
(X , [−,−,−]) is abelian. Similarly, a right truss (X , [−,−,−], ◦) is
a right near-truss for which (X , [−,−,−]) is an abelian heap.

A
left truss that is also a right truss, is called a truss. Hence a truss
(X , [−,−,−], ◦) consists of an abelian heap (X , [−,−,−]), a
semigroup (X , ◦), and both distributivity laws hold.

Trusses, endomorphism trusses

A left truss (X , [−,−,−], ◦) is a left near-truss for which the heap
(X , [−,−,−]) is abelian. Similarly, a right truss (X , [−,−,−], ◦) is
a right near-truss for which (X , [−,−,−]) is an abelian heap. A
left truss that is also a right truss, is called a truss. Hence a truss
(X , [−,−,−], ◦) consists of an abelian heap (X , [−,−,−]), a
semigroup (X , ◦), and both distributivity laws hold.

The main example of ring with identity is, for any abelian group
(G ,+), the endomorphism ring (End(G),+, ◦).

Similarly, the main
example of truss is, for any abelian heap (X , [−,−,−]), the
endomorphism truss (End(X), p, ◦) of (X , [−,−,−]). Here
End(X) denotes the set of all heap endomorphisms of
(X , [−,−,−]). The ternary operation p on End(X) is defined
pointwise: for every f , g , h ∈ End(X), that is, for every
f , g , h : X → X that are heap endomorphisms of X , we have that
p(f , g , h)(x) = [f (x), g(x), h(x)] for every x ∈ X .

The main example of ring with identity is, for any abelian group
(G ,+), the endomorphism ring (End(G),+, ◦). Similarly, the main
example of truss is, for any abelian heap (X , [−,−,−]), the
endomorphism truss (End(X), p, ◦) of (X , [−,−,−]). Here
End(X) denotes the set of all heap endomorphisms of
(X , [−,−,−]).

The ternary operation p on End(X) is defined
pointwise: for every f , g , h ∈ End(X), that is, for every
f , g , h : X → X that are heap endomorphisms of X , we have that
p(f , g , h)(x) = [f (x), g(x), h(x)] for every x ∈ X .

The main example of ring with identity is, for any abelian group
(G ,+), the endomorphism ring (End(G),+, ◦). Similarly, the main
example of truss is, for any abelian heap (X , [−,−,−]), the
endomorphism truss (End(X), p, ◦) of (X , [−,−,−]). Here
End(X) denotes the set of all heap endomorphisms of
(X , [−,−,−]). The ternary operation p on End(X) is defined
pointwise: for every f , g , h ∈ End(X), that is, for every
f , g , h : X → X that are heap endomorphisms of X , we have that
p(f , g , h)(x) = [f (x), g(x), h(x)] for every x ∈ X .

Ideals in a left near-truss

A congruence on a left near-truss (X , [−,−,−], ·) is an equivalence
relation ∼ on the set X such that [x , y , z] ∼ [x ′, y ′, z ′] and
xy ∼ x ′y ′ for every x , x ′, y , y ′, z , z ′ ∈ X such that x ∼ x ′, y ∼ y ′

and z ∼ z ′.

Congruences on a left near-truss form a complete
lattice.

Lemma
Let (X , [−,−,−], ·) be a left near-truss. For every normal subheap
S of the heap (X , [−,−,−]), let ∼S be the corresponding
congruence on the heap (X , [−,−,−]), defined, for every x , y ∈ X ,
by x ∼S y if there exists s ∈ S such that [x , y , s] ∈ S . The
following conditions are equivalent:
(a) ∼S is a congruence for the left near-truss (X , [−,−,−], ·).
(b) [xp, xq, q] ∈ S and [[p, q, x]y , xy , q] ∈ S for every x , y ∈ X and
every p, q ∈ S .

Ideals in a left near-truss

A congruence on a left near-truss (X , [−,−,−], ·) is an equivalence
relation ∼ on the set X such that [x , y , z] ∼ [x ′, y ′, z ′] and
xy ∼ x ′y ′ for every x , x ′, y , y ′, z , z ′ ∈ X such that x ∼ x ′, y ∼ y ′

and z ∼ z ′. Congruences on a left near-truss form a complete
lattice.

Lemma
Let (X , [−,−,−], ·) be a left near-truss. For every normal subheap
S of the heap (X , [−,−,−]), let ∼S be the corresponding
congruence on the heap (X , [−,−,−]), defined, for every x , y ∈ X ,
by x ∼S y if there exists s ∈ S such that [x , y , s] ∈ S . The
following conditions are equivalent:
(a) ∼S is a congruence for the left near-truss (X , [−,−,−], ·).
(b) [xp, xq, q] ∈ S and [[p, q, x]y , xy , q] ∈ S for every x , y ∈ X and
every p, q ∈ S .

Ideals in a left near-truss

A congruence on a left near-truss (X , [−,−,−], ·) is an equivalence
relation ∼ on the set X such that [x , y , z] ∼ [x ′, y ′, z ′] and
xy ∼ x ′y ′ for every x , x ′, y , y ′, z , z ′ ∈ X such that x ∼ x ′, y ∼ y ′

and z ∼ z ′. Congruences on a left near-truss form a complete
lattice.

Lemma
Let (X , [−,−,−], ·) be a left near-truss. For every normal subheap
S of the heap (X , [−,−,−]), let ∼S be the corresponding
congruence on the heap (X , [−,−,−]), defined, for every x , y ∈ X ,
by x ∼S y if there exists s ∈ S such that [x , y , s] ∈ S . The
following conditions are equivalent:
(a) ∼S is a congruence for the left near-truss (X , [−,−,−], ·).
(b) [xp, xq, q] ∈ S and [[p, q, x]y , xy , q] ∈ S for every x , y ∈ X and
every p, q ∈ S .

Ideals in a left near-truss

An ideal in a left near-truss (X , [−,−,−], ·) is any normal subheap
S of (X , [−,−,−]) such that [xp, xq, q] ∈ S and
[[p, q, x]y , xy , q] ∈ S for every x , y ∈ X and every p, q ∈ S .

Theorem
Let X be a left near-truss, I(X) the set of all ideals of X , and
C(X) the set of all congruences of X . Then there is a mapping
I(X)→ C(X), S 7→∼S , which is a surjective mapping.

Ideals in a left near-truss

An ideal in a left near-truss (X , [−,−,−], ·) is any normal subheap
S of (X , [−,−,−]) such that [xp, xq, q] ∈ S and
[[p, q, x]y , xy , q] ∈ S for every x , y ∈ X and every p, q ∈ S .

Theorem
Let X be a left near-truss, I(X) the set of all ideals of X , and
C(X) the set of all congruences of X . Then there is a mapping
I(X)→ C(X), S 7→∼S , which is a surjective mapping.

Theorem
Let (X , [−,−,−], ·) be a left near-truss, and fix an element y ∈ X .
Then (X , by , ·) is an algebra (in the sense of Universal Algebra) in
which (X , by) is a group (X , ∗y), (X , ·) is a semigroup, and
w(x ∗y z) = (wx) ∗y (wy)−∗ ∗y (wz) for every x , y , z ,w ∈ X . Here
(wy)−∗ denotes the inverse of the element w · y in the group
(X , by) = (X , ∗y).

In view of this theorem, it is convenient to study the structures
(X ,+, ·) for which (X ,+) is a group, not-necessarily abelian (so
that probably we should be more careful and write also here
(X ,+, 0,−) as one does correctly in Universal Algebra), (X , ·) is a
semigroup, and w(x + z) = wx − (w · 0) + wz . Let’s call them
J-rings (J for Jacobson), because our main example is, for any ring
(R,+, ·), the J-ring (R,+, ◦), where ◦ is the Jacobson
multiplication x ◦ y = x + y + xy .

Theorem
Let (X , [−,−,−], ·) be a left near-truss, and fix an element y ∈ X .
Then (X , by , ·) is an algebra (in the sense of Universal Algebra) in
which (X , by) is a group (X , ∗y), (X , ·) is a semigroup, and
w(x ∗y z) = (wx) ∗y (wy)−∗ ∗y (wz) for every x , y , z ,w ∈ X . Here
(wy)−∗ denotes the inverse of the element w · y in the group
(X , by) = (X , ∗y).

In view of this theorem, it is convenient to study the structures
(X ,+, ·) for which (X ,+) is a group, not-necessarily abelian (so
that probably we should be more careful and write also here
(X ,+, 0,−) as one does correctly in Universal Algebra), (X , ·) is a
semigroup, and w(x + z) = wx − (w · 0) + wz .

Let’s call them
J-rings (J for Jacobson), because our main example is, for any ring
(R,+, ·), the J-ring (R,+, ◦), where ◦ is the Jacobson
multiplication x ◦ y = x + y + xy .

Theorem
Let (X , [−,−,−], ·) be a left near-truss, and fix an element y ∈ X .
Then (X , by , ·) is an algebra (in the sense of Universal Algebra) in
which (X , by) is a group (X , ∗y), (X , ·) is a semigroup, and
w(x ∗y z) = (wx) ∗y (wy)−∗ ∗y (wz) for every x , y , z ,w ∈ X . Here
(wy)−∗ denotes the inverse of the element w · y in the group
(X , by) = (X , ∗y).

In view of this theorem, it is convenient to study the structures
(X ,+, ·) for which (X ,+) is a group, not-necessarily abelian (so
that probably we should be more careful and write also here
(X ,+, 0,−) as one does correctly in Universal Algebra), (X , ·) is a
semigroup, and w(x + z) = wx − (w · 0) + wz . Let’s call them
J-rings (J for Jacobson), because our main example is, for any ring
(R,+, ·), the J-ring (R,+, ◦), where ◦ is the Jacobson
multiplication x ◦ y = x + y + xy .

J-rings

Definition
A J-ring (X ,+,−, 0, ·) is a set X with two binary operations +
and ·, a unary operation − and a 0-ary operation 0 satisfying:
(i) associativity of +;
(ii) x + 0 = 0 + x = x for every x ∈ X ;
(iii) x + (−x) = (−x) + x = 0 for every x ∈ X ;
(iv) associativity of ·;
(v) “left weak distributivity” in the form
z(x + y) = zx − (z · 0) + zy for every x , y , z ∈ X .

Ideals in a J-ring

An ideal I in a J-ring (X ,+, ·) is a normal subgroup N of the
group (X ,+) such that xn − x · 0 ∈ N and (x + n)y − xy ∈ N for
every x , y ∈ X and every n ∈ N.

Lemma
Let (X , [−,−,−], ·) be a left near-truss and let e be an element of
X . Then there is a lattice isomorphism between the lattice of all
ideals of the J-ring (X , be , ·) and the lattice of all congruences on
(X , [−,−,−], ·). This correspondence associates with every ideal
N of the J-ring (X , be , ·) the congruence ∼N on (X , [−,−,−], ·)
defined, for every x , y ∈ X , by x ∼N y if x − y ∈ N. Conversely, it
associates to any congruence ∼ on (X , [−,−,−], ·) the equivalence
class [e]∼ of e modulo ∼.

Ideals in a J-ring

An ideal I in a J-ring (X ,+, ·) is a normal subgroup N of the
group (X ,+) such that xn − x · 0 ∈ N and (x + n)y − xy ∈ N for
every x , y ∈ X and every n ∈ N.

Lemma
Let (X , [−,−,−], ·) be a left near-truss and let e be an element of
X . Then there is a lattice isomorphism between the lattice of all
ideals of the J-ring (X , be , ·) and the lattice of all congruences on
(X , [−,−,−], ·). This correspondence associates with every ideal
N of the J-ring (X , be , ·) the congruence ∼N on (X , [−,−,−], ·)
defined, for every x , y ∈ X , by x ∼N y if x − y ∈ N. Conversely, it
associates to any congruence ∼ on (X , [−,−,−], ·) the equivalence
class [e]∼ of e modulo ∼.

Huq commutator and Smith commutator for left near-trusses,
idempotent endomorphisms and semidirect product of left
near-trusses, derivations of trusses, . . .

The Baer-Kaplansky theorem

Theorem
[Baer 1943, Kaplansky1952)] Two torsion abelian groups G and
H are isomorphic if and only if their endomorphism rings End(G)
and End(H) are isomorphic.

Moreover, for every ring isomorphism Φ: End(G)→ End(H)
there exists a unique group isomorphism ϕ : G → H such that
Φ(α) = ϕαϕ−1 for every α ∈ End(G).

The Baer-Kaplansky theorem

Theorem
[Baer 1943, Kaplansky1952)] Two torsion abelian groups G and
H are isomorphic if and only if their endomorphism rings End(G)
and End(H) are isomorphic.
Moreover, for every ring isomorphism Φ: End(G)→ End(H)
there exists a unique group isomorphism ϕ : G → H such that
Φ(α) = ϕαϕ−1 for every α ∈ End(G).

The Baer-Kaplansky theorem

It is still unknown wither this is true for all abelian groups. More
generally, it is still unknown when a right module M over an
associative ring R is uniquely determined, up to isomorphism, by
the ring End(MR) of all its R-endomorphisms.

The Baer-Kaplansky theorem

Theorem
[Breaz and Brzeziński, 2022] Two abelian groups G and H are
isomorphic if and only if their endomorphism trusses EndHeap(G)
and EndHeap(H) are isomorphic. Moreover, for every truss
isomorphism Φ: EndHeap(G)→ EndHeap(H), there exists a unique
heap isomorphism ϕ : G → H such that Φ(α) = ϕαϕ−1 for every
α ∈ EndHeap(G).

