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Ternary operations

A set X endowed with a ternary operation p : X × X × X → X

(no identity is required to be satisfied, at the moment).

The pairs (X , p) form a variety of algebras in the sense of
Universal Algebra. Their morphisms f : (X , p)→ (X ′, p′) are the
mappings f : X → X ′ such that p′(f (x), f (y), f (z)) = f (p(x , y , z))
for every x , y , z ∈ X .

In particular, these algebras (X , p) are the objects of a category,
whose initial object is the empty set ∅ (with its unique ternary
operation), and whose terminal objects are the singletons (with
their unique ternary operation). We will denote by ∗ any such
algebra with one element.
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Mal’tsev operations.

Let p : X × X × X → X be a ternary operation on the set X .

We say that p is a Mal’tsev operation if p(x , x , y) = y and
p(x , y , y) = x for every x , y ∈ X .

It will be often convenient to replace the ternary operation p on a
set X with an indexed family { by | y ∈ X } of binary operations
by : X × X → X defined by by (x , z) = p(x , y , z) for every
x , y , z ∈ X . The family of binary operations by is indexed in X
itself.

Correspondingly, we get a family of magmas (= sets with a binary
operation) (X , by ), which is again indexed in X itself.

We will also often use the notations [x , y , z ] instead of p(x , y , z),
and x ·y z instead of by (x , z).
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Mal’tsev operations.

Lemma
A ternary operation p on a set X is a Mal’tsev operation if and
only if, for the corresponding indexed family { by | y ∈ X } of
binary operations, the element y is a two-sided identity of the
magma (X , by ) for every y ∈ X .

Notice that in a magma, that is, a set with a not-necessarily
associative operation, a two-sided identity, when it exists, is unique.
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Commutative ternary operations.

What does “commutative” mean for a ternary operation p?

For a
binary operation · it means that x · z = z · x for all x , z ∈ X . Now
we have replaced the ternary operation p with a bunch of binary
operations ·y . Hence it is natural to say that a ternary operation p
on X is commutative if and only if all binary operations ·y , y ∈ X ,
are commutative. Therefore:

A ternary operation p on a set X is commutative if
p(x , y , z) = p(z , y , x) for every x , y , z ∈ X .
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Commutative ternary operations.

A ternary operation p on a set X is commutative if
p(x , y , z) = p(z , y , x) for every x , y , z ∈ X .

(This motivation sounds a little too naive... We will see later that
for heaps it is possible to define a notion of commutator of
congruences, and that a heap is commutative if and only if all its
congruences commute.

This is exactly the case of groups, for
instance.
For groups G , it is possible to define the commutator [M,N] of
any two normal subgroups M,N, of G and a group G is
commutative (abelian) if and only if [M,N] = 1 for all its normal
subgroups M,N.)
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(x ·y z) ·w u = x ·y (z ·w u) for every x , y , z ,w , u ∈ X . Therefore:

A ternary operation p on a set X is associative if
p(p(x , y , z),w , u) = p(x , y , p(z ,w , u)) for every x , y , z ,w , u ∈ X .

In particular, for y = w , we get that if a ternary operation p on a
set X is associative, then all the binary operations by are
associative, i.e., that all the magmas (X , by ), y ∈ X , are
semigroups.
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Heaps

A set X with an associative Mal’tsev operation [−,−,−] is called
a heap.

A mapping f : (X , [−,−,−])→ (X ′, [−,−,−]) between two heaps
is a heap morphism if

f ([x , x ′, x ′′]) = [f (x), f (x ′), f (x ′′)]

for every x , x ′, x ′′ ∈ X .

The category of heaps will be denoted by Heap. In Heap, the
initial object is ∅ and the terminal object is ∗.
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Heaps

Theorem
Let (X , p) be a non-empty heap. Then all the monoids (X , bx),
x ∈ X , are pair-wise isomorphic groups.

Any (X , bx) is a group because the inverse of any y ∈ X is [x , y , x ].

The group isomorphisms (X , bx)→ (X , by ) are the mappings
τ yx : (X , bx)→ (X , by ) defined by τ yx (z) = [z , x , y ] for every
x , y , z ∈ X .

A subset S of a heap is a subheap if [x , y , z ] ∈ S for every
x , y , z ∈ S .
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Example 1 (Brzeziński, Trans. Amer. Math. Soc., 2019)

Our “3-dimensional Euclidean geometrical real space” of
Newtonian Physics.

Its set E3 of points doesn’t have a natural
group structure (or a vector-space structure): the sum of two
points doesn’t have a natural meaning. But as soon as we fix a
point (an origin), we can define an addition using the
Parallelogram Rule, and we get an abelian group. In fact, we get a
3-dimensional vector space over the field of real numbers. Hence
E3 does not have a natural group structure, if we want it we need
the unnatural choice of an origin. But E3 does have a natural heap
structure: if A,B,C ∈ E3, we can define p(A,B,C ) with the
Parallelogram Rule, so that A,B,C , p(A,B,C ) are, orderly, the
vertex of a parallelogram, and in this way we get a heap (E3, p).
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Example 2

We can fix any line in the space, getting a subheap E1 of the
previous example E3, or any plane, getting a subheap E2 of E3.



Example 3

Fix any group G and define a ternary operation p on G setting
p(x , y , z) = xy−1z for every x , y , z ∈ G .

Then (G , p) is a heap.

Every non-empty heap is of this form, and there is a natural
functor of the category of groups into the categories of heaps.
Nevertheless these two categories are not equivalent, for instance
the category of heaps does not have a null object (the category of
groups and the category of heaps are not equivalent categories also
if we eliminate the empty heap from the objects of the category of
heaps).
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Normal subheaps

Lemma
The following conditions are equivalent for a non-empty subheap S
of a heap X :
(a) there exists e ∈ S such that for every x ∈ X and every s ∈ S
there exists t ∈ S such that

[x , e, s] = [t, e, x ].

(b) For every x ∈ X and every e, s ∈ S there exists t ∈ S such
that [x , e, s] = [t, e, x ].
(c) [[x , e, s], x , e] ∈ S for every x ∈ X and every e, s ∈ S .

A subheap S of a heap X is said to be a normal subheap if it is
non-empty and satisfies the equivalent conditions of the lemma.
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Normal subheaps

Corollary

The following conditions are equivalent for a subset S of a heap H:
(a) there exists e ∈ S such that S is a normal subgroup of (X , be).
(b) S is non-empty and S is a normal subgroup of (X , be) for
every e ∈ S .
(c) S is a normal subheap of X .



A remark

Some care is necessary here. We have chosen our terminology in
such a way that the empty set is a heap,

the empty subset is a
subheap of every heap, but normal subheaps are non-empty by
definition. As a consequence:

(a) Subheaps of a heap form a complete lattice (every
intersection of subheaps is a subheap).

(b) Congruences on a heap form a complete lattice (every
intersection of congruences is a congruence).

(c) Normal heaps of a heap do not form a lattice in general, but
only a partially ordered set, because the intersection of two normal
subheaps can be empty.

A congruence on a heap (X , [−,−,−]) is an equivalence relation ∼
on the set X such that [x , y , z ] ∼ [x ′, y ′, z ′], for every
x , x ′, y , y ′, z , z ′ ∈ X such that x ∼ x ′, y ∼ y ′ and z ∼ z ′.
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For example. . .

In a commutative heap all non-empty subheaps are normal.



Congruences and ideals

For a good algebraic structure (a group (G ,+,−, 0) or a ring
(R,+,−, 0)), there is a one-to-one correspondence
{ congruences } ←→ { equivalence classes of 0 } (=normal
subgroups of G , or ideals of R).

In the case of heaps, there is not
a zero, any element can be a zero, and therefore the situation
becomes { congruences } ←− { equivalence classes (of any
element)}
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Congruences and ideals

There is an onto mapping { normal subheaps } → { congruences }.



An example

Consider the heap (Z, [−,−,−]) of integer numbers with
[a, b, c] = a− b + c.

The complete lattice of its subheaps is
{ a + bZ | a, b ∈ Z } ∪ {∅}. The set of its normal subheaps is
{ a + bZ | a, b ∈ Z }. Its congruences are the congruences ≡n

modulo n, and the complete lattice of congruence is {≡n| n ∈ N },
which is isomorphic to the lattice (N, |) with 0 as its greatest
element and 1 as its least element.
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An example

There is an onto mapping { normal subheaps } → { congruences },
S 7→ ∼S , where x ∼S y if [x , y , s] ∈ S for every s ∈ S .

In our example (Z, [−,−,−]), that onto mapping is the
correspondence a + bZ 7→ congruence ≡|b| modulo |b|. This is an
onto mapping, but is not a bijection. Of course, a + bZ = c + dZ
if and only if |b| = |d | and a ≡|b| c . In the next proposition, we
will see that in order to get a one-to-one correspondence, that is, a
bijection, it suffices to fix an element e ∈ Z, and associate with
any normal subheap e + bZ containing e the congruence ≡|b|
modulo |b|.
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The situation for a generic heap (X , p) is the following:

Proposition

[Brzeziński] Let X be a heap and e be a fixed element of X . Then
there is a lattice isomorphism between the lattice of all congruences
on the heap X and the lattice of all normal subheaps of X that
contain e. It associates with any congruence ∼ the equivalence
class [e]∼ of e. Conversely, it associates with any normal subheap
S of X with e ∈ S the congruence ∼S on X defined, for every
x , y ∈ X , by x ∼S y if there exists s ∈ S such that [x , y , s] ∈ S .

For any two normal subheaps S ,T of a heap X , we have that
∼S ⊆ ∼T if and only if, for every x , y ∈ X and every s ∈ S such
that [x , y , s] ∈ S , there exists t ∈ T such that [x , y , t] ∈ T .
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Congruences and normal subheaps

By the previous proposition the lattice of all congruences on a heap
X is isomorphic to the lattice of all normal subgroups of any of the
groups (X , bx).

In particular, the lattice of all congruences on a
heap is a complete modular lattice.

Theorem
Let X be a heap. On the set N (X ) of all normal subheaps of X
define a pre-order � setting, for all M,N ∈ N (X ), M � N if for
every x , y ∈ X and s ∈ M such that [x , y , s] ∈ M there exists
t ∈ N such that [x , y , t] ∈ N. Let ' be the equivalence relation on
N (X ) associated to the pre-order �. Then the partially ordered
set N (X )/' is order isomorphic to the partially ordered set C(X )
of all congruences of the heap X .
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Commutators of two congruences in a heap

Now let us consider the problem of determining a natural notion of
commutator for a heap.

Let R and S be two congruences on a
heap X , and let R ×X S be the set of all triples (x , y , z) ∈ X 3 such
that xRy and ySz . Notice that R ×X S is a subheap of X 3. A
canonical connector between R and S is the mapping

p : R ×X S → X

defined by p(x , y , z) = [x , y , z ] for every (x , y , z) ∈ R ×X S ,
provided that xS [x , y , z ] and [x , y , z ]Rz for every
(x , y , z) ∈ R ×X S . The commutator of R and S is the smallest
congruence [R,S ] on the heap X such that R ×X S → X/[R, S ],
(x , y , z) 7→ [ [x , y , z ] ][R,S], is a heap morphism. That is, for every
x1, y1, z1, x2, y2, z2, x3, y3, z3 ∈ X such that xiRyi and yiSzi for all
i = 1, 2, 3, one has that

[[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]] [R,S ] [[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]].
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Commutators of two congruences in a heap

Let us compute the commutator of two congruences R,S on a
heap (X , p).

Theorem
Let R and S be two congruences on a heap (X , p). Fix an element
e in X . Let N := [e]R and M := [e]S be the normal subgroups of
the group (X , be) corresponding to the congruences R and S
respectively. Then the commutator [R,S ] of R and S is the
congruence on (X , p) corresponding to the normal subgroup
[N,M] of the group (X , be).

In particular, a heap (X , p) is abelian if and only if [X ,X ] = {e} in
the group (X , be), that is, if and only if the group (X , be) is
abelian. Since all the groups (X , by ) are isomorphic, this is
equivalent to all the groups (X , by ) being abelian, that is,
[x , y , z ] = [z , y , x ] for every x , y , z ∈ X .



Commutators of two congruences in a heap

Let us compute the commutator of two congruences R,S on a
heap (X , p).

Theorem
Let R and S be two congruences on a heap (X , p). Fix an element
e in X . Let N := [e]R and M := [e]S be the normal subgroups of
the group (X , be) corresponding to the congruences R and S
respectively. Then the commutator [R,S ] of R and S is the
congruence on (X , p) corresponding to the normal subgroup
[N,M] of the group (X , be).

In particular, a heap (X , p) is abelian if and only if [X ,X ] = {e} in
the group (X , be), that is, if and only if the group (X , be) is
abelian. Since all the groups (X , by ) are isomorphic, this is
equivalent to all the groups (X , by ) being abelian, that is,
[x , y , z ] = [z , y , x ] for every x , y , z ∈ X .



Commutators of two congruences in a heap

Let us compute the commutator of two congruences R,S on a
heap (X , p).

Theorem
Let R and S be two congruences on a heap (X , p). Fix an element
e in X . Let N := [e]R and M := [e]S be the normal subgroups of
the group (X , be) corresponding to the congruences R and S
respectively. Then the commutator [R,S ] of R and S is the
congruence on (X , p) corresponding to the normal subgroup
[N,M] of the group (X , be).

In particular, a heap (X , p) is abelian if and only if [X ,X ] = {e} in
the group (X , be), that is, if and only if the group (X , be) is
abelian. Since all the groups (X , by ) are isomorphic, this is
equivalent to all the groups (X , by ) being abelian, that is,
[x , y , z ] = [z , y , x ] for every x , y , z ∈ X .



Idempotent endomorphisms and semidirect products of
heaps

In any algebraic structure, idempotent endomorphisms are related
to semidirect products.

Proposition

Let X 6= ∅ be a heap, Y be a subheap of X , and ω a congruence
on X . The following conditions are equivalent:
(a) Y is a set of representatives of the equivalence classes of X
modulo ω, that is, Y ∩ [x ]ω is a singleton for every x ∈ X .
(b) There exists an idempotent heap endomorphism of X whose
image is Y and whose kernel is ω.
(c) For every e ∈ Y , there exists an idempotent group
endomorphism of the group (X , be) whose image is the subgroup Y
of (X , be) and whose kernel is the normal subgroup [e]ω of (X , be).
(d) The mapping g : Y → X/ω, defined by g(y) = [y ]ω for every
y ∈ Y , is a heap isomorphism.
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(c) For every e ∈ Y , there exists an idempotent group
endomorphism of the group (X , be) whose image is the subgroup Y
of (X , be) and whose kernel is the normal subgroup [e]ω of (X , be).
(d) The mapping g : Y → X/ω, defined by g(y) = [y ]ω for every
y ∈ Y , is a heap isomorphism.



Left near-trusses

A left near-truss (X , [−,−,−], ·) is a set X endowed with a ternary
operation [−,−,−] and a binary operation ·, such that
(X , [−,−,−]) is a heap, (X , ·) is a semigroup, and left
distributivity holds, that is,

x · [y , z ,w ] = [x · y , x · z , x · w ]

for every x , y , z ,w ∈ X .

Similarly for right near-trusses, where left
distributivity is replaced by right distributivity:
[y , z ,w ] · x = [y · x , z · x ,w · x ] for every x , y , z ,w ∈ X . Clearly,
the category of left near-trusses is isomorphic to the category of
right near-trusses, it suffices to associate to any left near-truss
(X , [−,−,−], ·) its opposite right near-truss (X , [−,−,−], ·op).
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Examples

(1) Let (X , [−,−,−]) be a heap and let

M(X ) := { f | f : X → X }

be the set of all mappings from the set X to itself.

Define a
ternary operation [−,−,−] on M(X ) setting, for every
f , g , h ∈ M(X ), [f , g , h](x) = [f (x), g(x), h(x)] for all x ∈ X .
Then (M(X ), [−,−,−]) is also a heap (it is the direct product of
|X | copies of the heap (X , [−,−,−])). Taking the composition of
mappings as the binary operation ·, M(X ) becomes a right
near-truss.

(2) Let (N,+, ·) be a left near-ring. Define a ternary operation
[−,−,−] : N × N × N → N on N setting [x , y , z ] = x − y + z for
every x , y , z ∈ N. Then (N, [−,−,−], ·) is a left near-truss.
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Examples

(3) Let (B, ∗, ◦) be a left skew brace. Define a ternary operation
[−,−,−] : B × B × B → B on B setting [x , y , z ] = x ∗ (y−∗) ∗ z
for every x , y , z ∈ B. Then (B, [−,−,−], ◦) is a left near-truss.



Examples

The right near-truss M(X ) of Example (1) is particularly
interesting because:

Theorem
Every right near-truss is isomorphic to a subnear-truss of M(X ) for
some heap X .



Lemma
Let (X , [−,−,−], ·) be a left near-truss and y be a fixed element
of X .
(a) If y is a right zero for the semigroup (X , ·) (that is, xy = y for
every x ∈ X ), then (X , by , ·) is a left near-ring.
(b) If (X , ·) is a group and y is its identity, then (X , by , ·) is a left
skew brace.



Trusses, endomorphism trusses

A left truss (X , [−,−,−], ◦) is a left near-truss for which the heap
(X , [−,−,−]) is abelian. Similarly, a right truss (X , [−,−,−], ◦) is
a right near-truss for which (X , [−,−,−]) is an abelian heap.

A
left truss that is also a right truss, is called a truss. Hence a truss
(X , [−,−,−], ◦) consists of an abelian heap (X , [−,−,−]), a
semigroup (X , ◦), and both distributivity laws hold.
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The main example of ring with identity is, for any abelian group
(G ,+), the endomorphism ring (End(G ),+, ◦).

Similarly, the main
example of truss is, for any abelian heap (X , [−,−,−]), the
endomorphism truss (End(X ), p, ◦) of (X , [−,−,−]). Here
End(X ) denotes the set of all heap endomorphisms of
(X , [−,−,−]). The ternary operation p on End(X ) is defined
pointwise: for every f , g , h ∈ End(X ), that is, for every
f , g , h : X → X that are heap endomorphisms of X , we have that
p(f , g , h)(x) = [f (x), g(x), h(x)] for every x ∈ X .
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Ideals in a left near-truss

A congruence on a left near-truss (X , [−,−,−], ·) is an equivalence
relation ∼ on the set X such that [x , y , z ] ∼ [x ′, y ′, z ′] and
xy ∼ x ′y ′ for every x , x ′, y , y ′, z , z ′ ∈ X such that x ∼ x ′, y ∼ y ′

and z ∼ z ′.

Congruences on a left near-truss form a complete
lattice.

Lemma
Let (X , [−,−,−], ·) be a left near-truss. For every normal subheap
S of the heap (X , [−,−,−]), let ∼S be the corresponding
congruence on the heap (X , [−,−,−]), defined, for every x , y ∈ X ,
by x ∼S y if there exists s ∈ S such that [x , y , s] ∈ S . The
following conditions are equivalent:
(a) ∼S is a congruence for the left near-truss (X , [−,−,−], ·).
(b) [xp, xq, q] ∈ S and [[p, q, x ]y , xy , q] ∈ S for every x , y ∈ X and
every p, q ∈ S .
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Ideals in a left near-truss

An ideal in a left near-truss (X , [−,−,−], ·) is any normal subheap
S of (X , [−,−,−]) such that [xp, xq, q] ∈ S and
[[p, q, x ]y , xy , q] ∈ S for every x , y ∈ X and every p, q ∈ S .

Theorem
Let X be a left near-truss, I(X ) the set of all ideals of X , and
C(X ) the set of all congruences of X . Then there is a mapping
I(X )→ C(X ), S 7→∼S , which is a surjective mapping.
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Theorem
Let (X , [−,−,−], ·) be a left near-truss, and fix an element y ∈ X .
Then (X , by , ·) is an algebra (in the sense of Universal Algebra) in
which (X , by ) is a group (X , ∗y ), (X , ·) is a semigroup, and
w(x ∗y z) = (wx) ∗y (wy)−∗ ∗y (wz) for every x , y , z ,w ∈ X . Here
(wy)−∗ denotes the inverse of the element w · y in the group
(X , by ) = (X , ∗y ).

In view of this theorem, it is convenient to study the structures
(X ,+, ·) for which (X ,+) is a group, not-necessarily abelian (so
that probably we should be more careful and write also here
(X ,+, 0,−) as one does correctly in Universal Algebra), (X , ·) is a
semigroup, and w(x + z) = wx − (w · 0) + wz . Let’s call them
J-rings (J for Jacobson), because our main example is, for any ring
(R,+, ·), the J-ring (R,+, ◦), where ◦ is the Jacobson
multiplication x ◦ y = x + y + xy .
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J-rings

Definition
A J-ring (X ,+,−, 0, ·) is a set X with two binary operations +
and ·, a unary operation − and a 0-ary operation 0 satisfying:
(i) associativity of +;
(ii) x + 0 = 0 + x = x for every x ∈ X ;
(iii) x + (−x) = (−x) + x = 0 for every x ∈ X ;
(iv) associativity of ·;
(v) “left weak distributivity” in the form
z(x + y) = zx − (z · 0) + zy for every x , y , z ∈ X .



Ideals in a J-ring

An ideal I in a J-ring (X ,+, ·) is a normal subgroup N of the
group (X ,+) such that xn − x · 0 ∈ N and (x + n)y − xy ∈ N for
every x , y ∈ X and every n ∈ N.

Lemma
Let (X , [−,−,−], ·) be a left near-truss and let e be an element of
X . Then there is a lattice isomorphism between the lattice of all
ideals of the J-ring (X , be , ·) and the lattice of all congruences on
(X , [−,−,−], ·). This correspondence associates with every ideal
N of the J-ring (X , be , ·) the congruence ∼N on (X , [−,−,−], ·)
defined, for every x , y ∈ X , by x ∼N y if x − y ∈ N. Conversely, it
associates to any congruence ∼ on (X , [−,−,−], ·) the equivalence
class [e]∼ of e modulo ∼.
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Huq commutator and Smith commutator for left near-trusses,
idempotent endomorphisms and semidirect product of left
near-trusses, derivations of trusses, . . .



The Baer-Kaplansky theorem

Theorem
[Baer 1943, Kaplansky1952)] Two torsion abelian groups G and
H are isomorphic if and only if their endomorphism rings End(G )
and End(H) are isomorphic.

Moreover, for every ring isomorphism Φ: End(G )→ End(H)
there exists a unique group isomorphism ϕ : G → H such that
Φ(α) = ϕαϕ−1 for every α ∈ End(G ).
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The Baer-Kaplansky theorem

It is still unknown wither this is true for all abelian groups. More
generally, it is still unknown when a right module M over an
associative ring R is uniquely determined, up to isomorphism, by
the ring End(MR) of all its R-endomorphisms.



The Baer-Kaplansky theorem

Theorem
[Breaz and Brzeziński, 2022] Two abelian groups G and H are
isomorphic if and only if their endomorphism trusses EndHeap(G )
and EndHeap(H) are isomorphic. Moreover, for every truss
isomorphism Φ: EndHeap(G )→ EndHeap(H), there exists a unique
heap isomorphism ϕ : G → H such that Φ(α) = ϕαϕ−1 for every
α ∈ EndHeap(G ).


