# Heaps and trusses 

Alberto Facchini<br>Università di Padova, Italy

NonCommutative Rings and their Applications, VIII
Lens, 28 August 2023

## Heaps: an old notion

Heaps were already considered by:
(1) H. Prüfer, Theorie der Abelschen Gruppen. I. Grundeigenschaften, Math. Z. 20 (1924), 165-187, and
(2) R. Baer, Zur Einfhrung des Scharbegriffs, J. Reine Angew. Math. 160 (1929), 199-207.

## Heaps: an old notion

Heaps were already considered by:
(1) H. Prüfer, Theorie der Abelschen Gruppen. I. Grundeigenschaften, Math. Z. 20 (1924), 165-187, and
(2) R. Baer, Zur Einfhrung des Scharbegriffs, J. Reine Angew. Math. 160 (1929), 199-207.

Trusses are a much more recent notion:
(3) T. Brzeziński, Trusses: between braces and rings, Trans. Amer. Math. Soc. 372 (2019), no. 6, 4149-4176.

What I will present you today appears in:
(4) M. J. Arroyo Paniagua and A. Facchini, Heaps and trusses, 2023, available in arXiv:2308.00527

What I will present you today appears in:
(4) M. J. Arroyo Paniagua and A. Facchini, Heaps and trusses, 2023, available in arXiv:2308.00527, and in
(5) T. Brzeziński, S. Mereta and B. Rybołowicz, From pre-trusses to skew braces, Publ. Mat. 66 (2022), no. 2, 683-714.

## Ternary operations

A set $X$ endowed with a ternary operation $p: X \times X \times X \rightarrow X$

## Ternary operations

A set $X$ endowed with a ternary operation $p: X \times X \times X \rightarrow X$ (no identity is required to be satisfied, at the moment).

## Ternary operations

A set $X$ endowed with a ternary operation $p: X \times X \times X \rightarrow X$ (no identity is required to be satisfied, at the moment).

The pairs $(X, p)$ form a variety of algebras in the sense of Universal Algebra.

## Ternary operations

A set $X$ endowed with a ternary operation $p: X \times X \times X \rightarrow X$ (no identity is required to be satisfied, at the moment).

The pairs $(X, p)$ form a variety of algebras in the sense of Universal Algebra. Their morphisms $f:(X, p) \rightarrow\left(X^{\prime}, p^{\prime}\right)$ are the mappings $f: X \rightarrow X^{\prime}$ such that $p^{\prime}(f(x), f(y), f(z))=f(p(x, y, z))$ for every $x, y, z \in X$.

## Ternary operations

A set $X$ endowed with a ternary operation $p: X \times X \times X \rightarrow X$ (no identity is required to be satisfied, at the moment).

The pairs $(X, p)$ form a variety of algebras in the sense of Universal Algebra. Their morphisms $f:(X, p) \rightarrow\left(X^{\prime}, p^{\prime}\right)$ are the mappings $f: X \rightarrow X^{\prime}$ such that $p^{\prime}(f(x), f(y), f(z))=f(p(x, y, z))$ for every $x, y, z \in X$.

In particular, these algebras $(X, p)$ are the objects of a category, whose initial object is the empty set $\emptyset$ (with its unique ternary operation), and whose terminal objects are the singletons (with their unique ternary operation). We will denote by $*$ any such algebra with one element.

## Mal'tsev operations.

Let $p: X \times X \times X \rightarrow X$ be a ternary operation on the set $X$.

## Mal'tsev operations.

Let $p: X \times X \times X \rightarrow X$ be a ternary operation on the set $X$. We say that $p$ is a Mal'tsev operation if $p(x, x, y)=y$ and $p(x, y, y)=x$ for every $x, y \in X$.

## Mal'tsev operations.

Let $p: X \times X \times X \rightarrow X$ be a ternary operation on the set $X$. We say that $p$ is a Mal'tsev operation if $p(x, x, y)=y$ and $p(x, y, y)=x$ for every $x, y \in X$.

It will be often convenient to replace the ternary operation $p$ on a set $X$ with an indexed family $\left\{b_{y} \mid y \in X\right\}$ of binary operations $b_{y}: X \times X \rightarrow X$ defined by $b_{y}(x, z)=p(x, y, z)$ for every $x, y, z \in X$.

## Mal'tsev operations.

Let $p: X \times X \times X \rightarrow X$ be a ternary operation on the set $X$. We say that $p$ is a Mal'tsev operation if $p(x, x, y)=y$ and $p(x, y, y)=x$ for every $x, y \in X$.

It will be often convenient to replace the ternary operation $p$ on a set $X$ with an indexed family $\left\{b_{y} \mid y \in X\right\}$ of binary operations $b_{y}: X \times X \rightarrow X$ defined by $b_{y}(x, z)=p(x, y, z)$ for every $x, y, z \in X$. The family of binary operations $b_{y}$ is indexed in $X$ itself.

## Mal'tsev operations.

Let $p: X \times X \times X \rightarrow X$ be a ternary operation on the set $X$. We say that $p$ is a Mal'tsev operation if $p(x, x, y)=y$ and $p(x, y, y)=x$ for every $x, y \in X$.

It will be often convenient to replace the ternary operation $p$ on a set $X$ with an indexed family $\left\{b_{y} \mid y \in X\right\}$ of binary operations $b_{y}: X \times X \rightarrow X$ defined by $b_{y}(x, z)=p(x, y, z)$ for every $x, y, z \in X$. The family of binary operations $b_{y}$ is indexed in $X$ itself.

Correspondingly, we get a family of magmas

## Mal'tsev operations.

Let $p: X \times X \times X \rightarrow X$ be a ternary operation on the set $X$. We say that $p$ is a Mal'tsev operation if $p(x, x, y)=y$ and $p(x, y, y)=x$ for every $x, y \in X$.

It will be often convenient to replace the ternary operation $p$ on a set $X$ with an indexed family $\left\{b_{y} \mid y \in X\right\}$ of binary operations $b_{y}: X \times X \rightarrow X$ defined by $b_{y}(x, z)=p(x, y, z)$ for every $x, y, z \in X$. The family of binary operations $b_{y}$ is indexed in $X$ itself.

Correspondingly, we get a family of magmas (= sets with a binary operation) ( $X, b_{y}$ ), which is again indexed in $X$ itself.

## Mal'tsev operations.

Let $p: X \times X \times X \rightarrow X$ be a ternary operation on the set $X$. We say that $p$ is a Mal'tsev operation if $p(x, x, y)=y$ and $p(x, y, y)=x$ for every $x, y \in X$.

It will be often convenient to replace the ternary operation $p$ on a set $X$ with an indexed family $\left\{b_{y} \mid y \in X\right\}$ of binary operations $b_{y}: X \times X \rightarrow X$ defined by $b_{y}(x, z)=p(x, y, z)$ for every $x, y, z \in X$. The family of binary operations $b_{y}$ is indexed in $X$ itself.

Correspondingly, we get a family of magmas (=sets with a binary operation) ( $X, b_{y}$ ), which is again indexed in $X$ itself.

We will also often use the notations $[x, y, z]$ instead of $p(x, y, z)$, and $x \cdot y z$ instead of $b_{y}(x, z)$.

## Mal'tsev operations.

## Lemma

A ternary operation $p$ on a set $X$ is a Mal'tsev operation if and only if, for the corresponding indexed family $\left\{b_{y} \mid y \in X\right\}$ of binary operations, the element $y$ is a two-sided identity of the magma $\left(X, b_{y}\right)$ for every $y \in X$.

## Mal'tsev operations.

## Lemma

A ternary operation $p$ on a set $X$ is a Mal'tsev operation if and only if, for the corresponding indexed family $\left\{b_{y} \mid y \in X\right\}$ of binary operations, the element $y$ is a two-sided identity of the magma $\left(X, b_{y}\right)$ for every $y \in X$.

Notice that in a magma, that is, a set with a not-necessarily associative operation, a two-sided identity, when it exists, is unique.

## Commutative ternary operations.

What does "commutative" mean for a ternary operation $p$ ?

## Commutative ternary operations.

What does "commutative" mean for a ternary operation $p$ ? For a binary operation . it means that $x \cdot z=z \cdot x$ for all $x, z \in X$. Now we have replaced the ternary operation $p$ with a bunch of binary operations $\cdot y$. Hence it is natural to say that a ternary operation $p$ on $X$ is commutative if and only if all binary operations $\cdot y, y \in X$, are commutative.

## Commutative ternary operations.

What does "commutative" mean for a ternary operation $p$ ? For a binary operation - it means that $x \cdot z=z \cdot x$ for all $x, z \in X$. Now we have replaced the ternary operation $p$ with a bunch of binary operations $\cdot y$. Hence it is natural to say that a ternary operation $p$ on $X$ is commutative if and only if all binary operations $\cdot y, y \in X$, are commutative. Therefore:

A ternary operation $p$ on a set $X$ is commutative if $p(x, y, z)=p(z, y, x)$ for every $x, y, z \in X$.

## Commutative ternary operations.

A ternary operation $p$ on a set $X$ is commutative if $p(x, y, z)=p(z, y, x)$ for every $x, y, z \in X$.
(This motivation sounds a little too naive... We will see later that for heaps it is possible to define a notion of commutator of congruences, and that a heap is commutative if and only if all its congruences commute.

## Commutative ternary operations.

A ternary operation $p$ on a set $X$ is commutative if $p(x, y, z)=p(z, y, x)$ for every $x, y, z \in X$.
(This motivation sounds a little too naive... We will see later that for heaps it is possible to define a notion of commutator of congruences, and that a heap is commutative if and only if all its congruences commute. This is exactly the case of groups, for instance.
For groups $G$, it is possible to define the commutator $[M, N]$ of any two normal subgroups $M, N$, of $G$ and a group $G$ is commutative (abelian) if and only if $[M, N]=1$ for all its normal subgroups $M, N$.)

## Associative ternary operations

What does "associative" mean for a ternary operation $p$ ?

## Associative ternary operations

What does "associative" mean for a ternary operation $p$ ?
For a binary operation it means that $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ for all $x, y, z \in X$. Now we have replaced the ternary operation $p$ with a bunch of binary operations $y$. Hence it is natural to say that a ternary operation $p$ on $X$ is associative if and only if $(x \cdot y z) \cdot w u=x \cdot y(z \cdot w u)$ for every $x, y, z, w, u \in X$.

## Associative ternary operations

What does "associative" mean for a ternary operation $p$ ?
For a binary operation it means that $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ for all $x, y, z \in X$. Now we have replaced the ternary operation $p$ with a bunch of binary operations $\cdot y$. Hence it is natural to say that a ternary operation $p$ on $X$ is associative if and only if $(x \cdot y z) \cdot{ }_{w} u=x \cdot{ }_{y}\left(z \cdot{ }_{w} u\right)$ for every $x, y, z, w, u \in X$. Therefore:

## Associative ternary operations

What does "associative" mean for a ternary operation $p$ ?
For a binary operation it means that $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ for all $x, y, z \in X$. Now we have replaced the ternary operation $p$ with a bunch of binary operations $\cdot y$. Hence it is natural to say that a ternary operation $p$ on $X$ is associative if and only if $(x \cdot y z) \cdot{ }_{w} u=x \cdot{ }_{y}\left(z \cdot{ }_{w} u\right)$ for every $x, y, z, w, u \in X$. Therefore:

A ternary operation $p$ on a set $X$ is associative if $p(p(x, y, z), w, u)=p(x, y, p(z, w, u))$ for every $x, y, z, w, u \in X$.

## Associative ternary operations

What does "associative" mean for a ternary operation $p$ ?
For a binary operation it means that $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ for all $x, y, z \in X$. Now we have replaced the ternary operation $p$ with a bunch of binary operations $\cdot y$. Hence it is natural to say that a ternary operation $p$ on $X$ is associative if and only if $(x \cdot y z) \cdot{ }_{w} u=x \cdot{ }_{y}\left(z \cdot{ }_{w} u\right)$ for every $x, y, z, w, u \in X$. Therefore:

A ternary operation $p$ on a set $X$ is associative if $p(p(x, y, z), w, u)=p(x, y, p(z, w, u))$ for every $x, y, z, w, u \in X$.

In particular, for $y=w$, we get that if a ternary operation $p$ on a set $X$ is associative, then all the binary operations $b_{y}$ are associative, i.e., that all the magmas $\left(X, b_{y}\right), y \in X$, are semigroups.

## Heaps

A set $X$ with an associative Mal'tsev operation $[-,-,-]$ is called a heap.

## Heaps

A set $X$ with an associative Mal'tsev operation $[-,-,-]$ is called a heap.

A mapping $f:(X,[-,-,-]) \rightarrow\left(X^{\prime},[-,-,-]\right)$ between two heaps is a heap morphism if

$$
f\left(\left[x, x^{\prime}, x^{\prime \prime}\right]\right)=\left[f(x), f\left(x^{\prime}\right), f\left(x^{\prime \prime}\right)\right]
$$

for every $x, x^{\prime}, x^{\prime \prime} \in X$.

## Heaps

A set $X$ with an associative Mal'tsev operation $[-,-,-]$ is called a heap.

A mapping $f:(X,[-,-,-]) \rightarrow\left(X^{\prime},[-,-,-]\right)$ between two heaps is a heap morphism if

$$
f\left(\left[x, x^{\prime}, x^{\prime \prime}\right]\right)=\left[f(x), f\left(x^{\prime}\right), f\left(x^{\prime \prime}\right)\right]
$$

for every $x, x^{\prime}, x^{\prime \prime} \in X$.
The category of heaps will be denoted by Heap. In Heap, the initial object is $\emptyset$ and the terminal object is $*$.

## Heaps

Theorem
Let $(X, p)$ be a non-empty heap. Then all the monoids $\left(X, b_{x}\right)$, $x \in X$, are pair-wise isomorphic groups.

## Heaps

Theorem
Let $(X, p)$ be a non-empty heap. Then all the monoids $\left(X, b_{X}\right)$, $x \in X$, are pair-wise isomorphic groups.

Any $\left(X, b_{x}\right)$ is a group because the inverse of any $y \in X$ is $[x, y, x]$.

## Heaps

## Theorem

Let $(X, p)$ be a non-empty heap. Then all the monoids $\left(X, b_{x}\right)$, $x \in X$, are pair-wise isomorphic groups.

Any $\left(X, b_{x}\right)$ is a group because the inverse of any $y \in X$ is $[x, y, x]$.
The group isomorphisms $\left(X, b_{x}\right) \rightarrow\left(X, b_{y}\right)$ are the mappings $\tau_{x}^{y}:\left(X, b_{x}\right) \rightarrow\left(X, b_{y}\right)$ defined by $\tau_{x}^{y}(z)=[z, x, y]$ for every $x, y, z \in X$.

## Heaps

## Theorem

Let $(X, p)$ be a non-empty heap. Then all the monoids $\left(X, b_{x}\right)$, $x \in X$, are pair-wise isomorphic groups.

Any $\left(X, b_{x}\right)$ is a group because the inverse of any $y \in X$ is $[x, y, x]$.
The group isomorphisms $\left(X, b_{x}\right) \rightarrow\left(X, b_{y}\right)$ are the mappings $\tau_{x}^{y}:\left(X, b_{x}\right) \rightarrow\left(X, b_{y}\right)$ defined by $\tau_{x}^{y}(z)=[z, x, y]$ for every $x, y, z \in X$.

A subset $S$ of a heap is a subheap if $[x, y, z] \in S$ for every $x, y, z \in S$.

## Example 1 (Brzeziński, Trans. Amer. Math. Soc., 2019)

Our "3-dimensional Euclidean geometrical real space" of Newtonian Physics.

## Example 1 (Brzeziński, Trans. Amer. Math. Soc., 2019)

Our "3-dimensional Euclidean geometrical real space" of Newtonian Physics. Its set $E_{3}$ of points doesn't have a natural group structure (or a vector-space structure): the sum of two points doesn't have a natural meaning.

## Example 1 (Brzeziński, Trans. Amer. Math. Soc., 2019)

Our "3-dimensional Euclidean geometrical real space" of Newtonian Physics. Its set $E_{3}$ of points doesn't have a natural group structure (or a vector-space structure): the sum of two points doesn't have a natural meaning. But as soon as we fix a point (an origin), we can define an addition using the Parallelogram Rule, and we get an abelian group. In fact, we get a 3-dimensional vector space over the field of real numbers.

## Example 1 (Brzeziński, Trans. Amer. Math. Soc., 2019)

Our "3-dimensional Euclidean geometrical real space" of Newtonian Physics. Its set $E_{3}$ of points doesn't have a natural group structure (or a vector-space structure): the sum of two points doesn't have a natural meaning. But as soon as we fix a point (an origin), we can define an addition using the Parallelogram Rule, and we get an abelian group. In fact, we get a 3-dimensional vector space over the field of real numbers. Hence $E_{3}$ does not have a natural group structure, if we want it we need the unnatural choice of an origin.

## Example 1 (Brzeziński, Trans. Amer. Math. Soc., 2019)

Our "3-dimensional Euclidean geometrical real space" of Newtonian Physics. Its set $E_{3}$ of points doesn't have a natural group structure (or a vector-space structure): the sum of two points doesn't have a natural meaning. But as soon as we fix a point (an origin), we can define an addition using the Parallelogram Rule, and we get an abelian group. In fact, we get a 3-dimensional vector space over the field of real numbers. Hence $E_{3}$ does not have a natural group structure, if we want it we need the unnatural choice of an origin. But $E_{3}$ does have a natural heap structure: if $A, B, C \in E_{3}$, we can define $p(A, B, C)$ with the Parallelogram Rule, so that $A, B, C, p(A, B, C)$ are, orderly, the vertex of a parallelogram, and in this way we get a heap $\left(E_{3}, p\right)$.

## Example 2

We can fix any line in the space, getting a subheap $E_{1}$ of the previous example $E_{3}$, or any plane, getting a subheap $E_{2}$ of $E_{3}$.

## Example 3

Fix any group $G$ and define a ternary operation $p$ on $G$ setting $p(x, y, z)=x y^{-1} z$ for every $x, y, z \in G$.

## Example 3

Fix any group $G$ and define a ternary operation $p$ on $G$ setting $p(x, y, z)=x y^{-1} z$ for every $x, y, z \in G$. Then $(G, p)$ is a heap.

## Example 3

Fix any group $G$ and define a ternary operation $p$ on $G$ setting $p(x, y, z)=x y^{-1} z$ for every $x, y, z \in G$. Then $(G, p)$ is a heap.

Every non-empty heap is of this form, and there is a natural functor of the category of groups into the categories of heaps.

## Example 3

Fix any group $G$ and define a ternary operation $p$ on $G$ setting $p(x, y, z)=x y^{-1} z$ for every $x, y, z \in G$. Then $(G, p)$ is a heap.

Every non-empty heap is of this form, and there is a natural functor of the category of groups into the categories of heaps. Nevertheless these two categories are not equivalent, for instance the category of heaps does not have a null object (the category of groups and the category of heaps are not equivalent categories also if we eliminate the empty heap from the objects of the category of heaps).

## Normal subheaps

## Lemma

The following conditions are equivalent for a non-empty subheap $S$ of a heap $X$ :
(a) there exists $e \in S$ such that for every $x \in X$ and every $s \in S$ there exists $t \in S$ such that

$$
[x, e, s]=[t, e, x] .
$$

(b) For every $x \in X$ and every $e, s \in S$ there exists $t \in S$ such that $[x, e, s]=[t, e, x]$.
(c) $[[x, e, s], x, e] \in S$ for every $x \in X$ and every $e, s \in S$.

## Normal subheaps

## Lemma

The following conditions are equivalent for a non-empty subheap $S$ of a heap $X$ :
(a) there exists $e \in S$ such that for every $x \in X$ and every $s \in S$ there exists $t \in S$ such that

$$
[x, e, s]=[t, e, x] .
$$

(b) For every $x \in X$ and every $e, s \in S$ there exists $t \in S$ such that $[x, e, s]=[t, e, x]$.
(c) $[[x, e, s], x, e] \in S$ for every $x \in X$ and every $e, s \in S$.

A subheap $S$ of a heap $X$ is said to be a normal subheap if it is non-empty and satisfies the equivalent conditions of the lemma.

## Normal subheaps

## Corollary

The following conditions are equivalent for a subset $S$ of a heap $H$ : (a) there exists $e \in S$ such that $S$ is a normal subgroup of $\left(X, b_{e}\right)$.
(b) $S$ is non-empty and $S$ is a normal subgroup of $\left(X, b_{e}\right)$ for every $e \in S$.
(c) $S$ is a normal subheap of $X$.

## A remark

Some care is necessary here. We have chosen our terminology in such a way that the empty set is a heap,

## A remark

Some care is necessary here. We have chosen our terminology in such a way that the empty set is a heap, the empty subset is a subheap of every heap,

## A remark

Some care is necessary here. We have chosen our terminology in such a way that the empty set is a heap, the empty subset is a subheap of every heap, but normal subheaps are non-empty by definition.

## A remark

Some care is necessary here. We have chosen our terminology in such a way that the empty set is a heap, the empty subset is a subheap of every heap, but normal subheaps are non-empty by definition. As a consequence:
(a) Subheaps of a heap form a complete lattice (every intersection of subheaps is a subheap).

## A remark

Some care is necessary here. We have chosen our terminology in such a way that the empty set is a heap, the empty subset is a subheap of every heap, but normal subheaps are non-empty by definition. As a consequence:
(a) Subheaps of a heap form a complete lattice (every intersection of subheaps is a subheap).
(b) Congruences on a heap form a complete lattice (every intersection of congruences is a congruence).

## A remark

Some care is necessary here. We have chosen our terminology in such a way that the empty set is a heap, the empty subset is a subheap of every heap, but normal subheaps are non-empty by definition. As a consequence:
(a) Subheaps of a heap form a complete lattice (every intersection of subheaps is a subheap).
(b) Congruences on a heap form a complete lattice (every intersection of congruences is a congruence).
(c) Normal heaps of a heap do not form a lattice in general, but only a partially ordered set, because the intersection of two normal subheaps can be empty.

## A remark

Some care is necessary here. We have chosen our terminology in such a way that the empty set is a heap, the empty subset is a subheap of every heap, but normal subheaps are non-empty by definition. As a consequence:
(a) Subheaps of a heap form a complete lattice (every intersection of subheaps is a subheap).
(b) Congruences on a heap form a complete lattice (every intersection of congruences is a congruence).
(c) Normal heaps of a heap do not form a lattice in general, but only a partially ordered set, because the intersection of two normal subheaps can be empty.

A congruence on a heap $(X,[-,-,-])$ is an equivalence relation $\sim$ on the set $X$ such that $[x, y, z] \sim\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$, for every $x, x^{\prime}, y, y^{\prime}, z, z^{\prime} \in X$ such that $x \sim x^{\prime}, y \sim y^{\prime}$ and $z \sim z^{\prime}$.

## For example. . .

In a commutative heap all non-empty subheaps are normal.

## Congruences and ideals

For a good algebraic structure (a group $(G,+,-, 0)$ or a ring $(R,+,-, 0))$, there is a one-to-one correspondence $\{$ congruences $\} \longleftrightarrow\{$ equivalence classes of 0$\}$ (=normal subgroups of $G$, or ideals of $R$ ).

## Congruences and ideals

For a good algebraic structure (a group $(G,+,-, 0)$ or a ring $(R,+,-, 0))$, there is a one-to-one correspondence $\{$ congruences $\} \longleftrightarrow\{$ equivalence classes of 0$\}$ (=normal subgroups of $G$, or ideals of $R$ ). In the case of heaps, there is not a zero, any element can be a zero, and therefore the situation becomes $\{$ congruences $\} \longleftarrow\{$ equivalence classes (of any element) $\}$

## Congruences and ideals

There is an onto mapping $\{$ normal subheaps $\} \rightarrow\{$ congruences $\}$.

## An example

Consider the heap $(\mathbb{Z},[-,-,-])$ of integer numbers with $[a, b, c]=a-b+c$.

## An example

Consider the heap $(\mathbb{Z},[-,-,-])$ of integer numbers with $[a, b, c]=a-b+c$. The complete lattice of its subheaps is $\{a+b \mathbb{Z} \mid a, b \in \mathbb{Z}\} \cup\{\emptyset\}$.

## An example

Consider the heap $(\mathbb{Z},[-,-,-])$ of integer numbers with $[a, b, c]=a-b+c$. The complete lattice of its subheaps is $\{a+b \mathbb{Z} \mid a, b \in \mathbb{Z}\} \cup\{\emptyset\}$. The set of its normal subheaps is $\{a+b \mathbb{Z} \mid a, b \in \mathbb{Z}\}$.

## An example

Consider the heap $(\mathbb{Z},[-,-,-])$ of integer numbers with $[a, b, c]=a-b+c$. The complete lattice of its subheaps is $\{a+b \mathbb{Z} \mid a, b \in \mathbb{Z}\} \cup\{\emptyset\}$. The set of its normal subheaps is $\{a+b \mathbb{Z} \mid a, b \in \mathbb{Z}\}$. Its congruences are the congruences $\equiv_{n}$ modulo $n$, and the complete lattice of congruence is $\left\{\equiv_{n} \mid n \in \mathbb{N}\right\}$, which is isomorphic to the lattice $(\mathbb{N}, \mid)$ with 0 as its greatest element and 1 as its least element.

## An example

There is an onto mapping $\{$ normal subheaps $\} \rightarrow\{$ congruences $\}$, $S \mapsto \sim_{s}$, where $x \sim_{s} y$ if $[x, y, s] \in S$ for every $s \in S$.

## An example

There is an onto mapping $\{$ normal subheaps $\} \rightarrow\{$ congruences $\}$, $S \mapsto \sim_{s}$, where $x \sim_{s} y$ if $[x, y, s] \in S$ for every $s \in S$.

In our example $(\mathbb{Z},[-,-,-])$, that onto mapping is the correspondence $a+b \mathbb{Z} \mapsto$ congruence $\equiv_{|b|}$ modulo $|b|$. This is an onto mapping, but is not a bijection. Of course, $a+b \mathbb{Z}=c+d \mathbb{Z}$ if and only if $|b|=|d|$ and $a \equiv_{|b|} c$. In the next proposition, we will see that in order to get a one-to-one correspondence, that is, a bijection, it suffices to fix an element $e \in \mathbb{Z}$, and associate with any normal subheap $e+b \mathbb{Z}$ containing $e$ the congruence $\equiv_{|b|}$ modulo $|b|$.

The situation for a generic heap $(X, p)$ is the following:

## Proposition

[Brzeziński] Let $X$ be a heap and e be a fixed element of $X$. Then there is a lattice isomorphism between the lattice of all congruences on the heap $X$ and the lattice of all normal subheaps of $X$ that contain e. It associates with any congruence $\sim$ the equivalence class $[e]_{\sim}$ of e. Conversely, it associates with any normal subheap $S$ of $X$ with $e \in S$ the congruence $\sim_{s}$ on $X$ defined, for every $x, y \in X$, by $x \sim s y$ if there exists $s \in S$ such that $[x, y, s] \in S$.

The situation for a generic heap $(X, p)$ is the following:

## Proposition

[Brzeziński] Let $X$ be a heap and e be a fixed element of $X$. Then there is a lattice isomorphism between the lattice of all congruences on the heap $X$ and the lattice of all normal subheaps of $X$ that contain e. It associates with any congruence $\sim$ the equivalence class $[e]_{\sim}$ of e. Conversely, it associates with any normal subheap $S$ of $X$ with $e \in S$ the congruence $\sim_{s}$ on $X$ defined, for every $x, y \in X$, by $x \sim_{s} y$ if there exists $s \in S$ such that $[x, y, s] \in S$.

For any two normal subheaps $S, T$ of a heap $X$, we have that $\sim_{S} \subseteq \sim_{T}$ if and only if, for every $x, y \in X$ and every $s \in S$ such that $[x, y, s] \in S$, there exists $t \in T$ such that $[x, y, t] \in T$.

## Congruences and normal subheaps

By the previous proposition the lattice of all congruences on a heap $X$ is isomorphic to the lattice of all normal subgroups of any of the groups $\left(X, b_{X}\right)$.

## Congruences and normal subheaps

By the previous proposition the lattice of all congruences on a heap $X$ is isomorphic to the lattice of all normal subgroups of any of the groups $\left(X, b_{X}\right)$. In particular, the lattice of all congruences on a heap is a complete modular lattice.

## Congruences and normal subheaps

By the previous proposition the lattice of all congruences on a heap $X$ is isomorphic to the lattice of all normal subgroups of any of the groups ( $X, b_{x}$ ). In particular, the lattice of all congruences on a heap is a complete modular lattice.

## Theorem

Let $X$ be a heap. On the set $\mathcal{N}(X)$ of all normal subheaps of $X$ define a pre-order $\preceq$ setting, for all $M, N \in \mathcal{N}(X), M \preceq N$ if for every $x, y \in X$ and $s \in M$ such that $[x, y, s] \in M$ there exists $t \in N$ such that $[x, y, t] \in N$. Let $\simeq$ be the equivalence relation on $\mathcal{N}(X)$ associated to the pre-order $\preceq$. Then the partially ordered set $\mathcal{N}(X) / \simeq$ is order isomorphic to the partially ordered set $\mathcal{C}(X)$ of all congruences of the heap $X$.

## Commutators of two congruences in a heap

Now let us consider the problem of determining a natural notion of commutator for a heap.

## Commutators of two congruences in a heap

Now let us consider the problem of determining a natural notion of commutator for a heap. Let $R$ and $S$ be two congruences on a heap $X$, and let $R \times_{X} S$ be the set of all triples $(x, y, z) \in X^{3}$ such that $x R y$ and $y S z$. Notice that $R \times_{x} S$ is a subheap of $X^{3}$. A canonical connector between $R$ and $S$ is the mapping

$$
p: R \times x S \rightarrow X
$$

defined by $p(x, y, z)=[x, y, z]$ for every $(x, y, z) \in R \times x S$, provided that $x S[x, y, z]$ and $[x, y, z] R z$ for every $(x, y, z) \in R \times_{x} S$.

## Commutators of two congruences in a heap

Now let us consider the problem of determining a natural notion of commutator for a heap. Let $R$ and $S$ be two congruences on a heap $X$, and let $R \times_{X} S$ be the set of all triples $(x, y, z) \in X^{3}$ such that $x R y$ and $y S z$. Notice that $R \times_{X} S$ is a subheap of $X^{3}$. A canonical connector between $R$ and $S$ is the mapping

$$
p: R \times_{X} S \rightarrow X
$$

defined by $p(x, y, z)=[x, y, z]$ for every $(x, y, z) \in R \times x S$, provided that $x S[x, y, z]$ and $[x, y, z] R z$ for every $(x, y, z) \in R \times_{x} S$. The commutator of $R$ and $S$ is the smallest congruence $[R, S]$ on the heap $X$ such that $R \times_{x} S \rightarrow X /[R, S]$, $(x, y, z) \mapsto[[x, y, z]]_{[R, S]}$, is a heap morphism.

## Commutators of two congruences in a heap

Now let us consider the problem of determining a natural notion of commutator for a heap. Let $R$ and $S$ be two congruences on a heap $X$, and let $R \times_{X} S$ be the set of all triples $(x, y, z) \in X^{3}$ such that $x R y$ and $y S z$. Notice that $R \times_{x} S$ is a subheap of $X^{3}$. A canonical connector between $R$ and $S$ is the mapping

$$
p: R \times x S \rightarrow X
$$

defined by $p(x, y, z)=[x, y, z]$ for every $(x, y, z) \in R \times x S$, provided that $x S[x, y, z]$ and $[x, y, z] R z$ for every $(x, y, z) \in R \times_{x} S$. The commutator of $R$ and $S$ is the smallest congruence $[R, S]$ on the heap $X$ such that $R \times_{x} S \rightarrow X /[R, S]$, $(x, y, z) \mapsto[[x, y, z]]_{[R, S]}$, is a heap morphism. That is, for every $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, x_{3}, y_{3}, z_{3} \in X$ such that $x_{i} R y_{i}$ and $y_{i} S z_{i}$ for all $i=1,2,3$, one has that
$\left[\left[x_{1}, y_{1}, z_{1}\right],\left[x_{2}, y_{2}, z_{2}\right],\left[x_{3}, y_{3}, z_{3}\right]\right][R, S]\left[\left[x_{1}, x_{2}, x_{3}\right],\left[y_{1}, y_{2}, y_{3}\right],\left[z_{1}, z_{2}, z_{3}\right]\right]$.

## Commutators of two congruences in a heap

Let us compute the commutator of two congruences $R, S$ on a heap $(X, p)$.

## Commutators of two congruences in a heap

Let us compute the commutator of two congruences $R, S$ on a heap $(X, p)$.

## Theorem

Let $R$ and $S$ be two congruences on a heap $(X, p)$. Fix an element $e$ in $X$. Let $N:=[e]_{R}$ and $M:=[e]_{S}$ be the normal subgroups of the group $\left(X, b_{e}\right)$ corresponding to the congruences $R$ and $S$ respectively. Then the commutator $[R, S]$ of $R$ and $S$ is the congruence on ( $X, p$ ) corresponding to the normal subgroup $[N, M]$ of the $\operatorname{group}\left(X, b_{e}\right)$.

## Commutators of two congruences in a heap

Let us compute the commutator of two congruences $R, S$ on a heap $(X, p)$.

## Theorem

Let $R$ and $S$ be two congruences on a heap $(X, p)$. Fix an element $e$ in $X$. Let $N:=[e]_{R}$ and $M:=[e]_{S}$ be the normal subgroups of the group ( $X, b_{e}$ ) corresponding to the congruences $R$ and $S$ respectively. Then the commutator $[R, S]$ of $R$ and $S$ is the congruence on ( $X, p$ ) corresponding to the normal subgroup $[N, M]$ of the group $\left(X, b_{e}\right)$.
In particular, a heap $(X, p)$ is abelian if and only if $[X, X]=\{e\}$ in the group $\left(X, b_{e}\right)$, that is, if and only if the group $\left(X, b_{e}\right)$ is abelian. Since all the groups $\left(X, b_{y}\right)$ are isomorphic, this is equivalent to all the groups $\left(X, b_{y}\right)$ being abelian, that is, $[x, y, z]=[z, y, x]$ for every $x, y, z \in X$.

Idempotent endomorphisms and semidirect products of heaps

In any algebraic structure, idempotent endomorphisms are related to semidirect products.

## Idempotent endomorphisms and semidirect products of heaps

In any algebraic structure, idempotent endomorphisms are related to semidirect products.

## Proposition

Let $X \neq \emptyset$ be a heap, $Y$ be a subheap of $X$, and $\omega$ a congruence on $X$. The following conditions are equivalent:
(a) $Y$ is a set of representatives of the equivalence classes of $X$ modulo $\omega$, that is, $Y \cap[x]_{\omega}$ is a singleton for every $x \in X$.
(b) There exists an idempotent heap endomorphism of $X$ whose image is $Y$ and whose kernel is $\omega$.
(c) For every $e \in Y$, there exists an idempotent group endomorphism of the group $\left(X, b_{e}\right)$ whose image is the subgroup $Y$ of $\left(X, b_{e}\right)$ and whose kernel is the normal subgroup $[e]_{\omega}$ of $\left(X, b_{e}\right)$. (d) The mapping $g: Y \rightarrow X / \omega$, defined by $g(y)=[y]_{\omega}$ for every $y \in Y$, is a heap isomorphism.

## Left near-trusses

A left near-truss $(X,[-,-,-], \cdot)$ is a set $X$ endowed with a ternary operation $[-,-,-]$ and a binary operation $\cdot$, such that $(X,[-,-,-])$ is a heap, $(X, \cdot)$ is a semigroup, and left distributivity holds, that is,

$$
x \cdot[y, z, w]=[x \cdot y, x \cdot z, x \cdot w]
$$

for every $x, y, z, w \in X$.

## Left near-trusses

A left near-truss $(X,[-,-,-], \cdot)$ is a set $X$ endowed with a ternary operation $[-,-,-]$ and a binary operation $\cdot$, such that $(X,[-,-,-])$ is a heap, $(X, \cdot)$ is a semigroup, and left distributivity holds, that is,

$$
x \cdot[y, z, w]=[x \cdot y, x \cdot z, x \cdot w]
$$

for every $x, y, z, w \in X$. Similarly for right near-trusses, where left distributivity is replaced by right distributivity: $[y, z, w] \cdot x=[y \cdot x, z \cdot x, w \cdot x]$ for every $x, y, z, w \in X$.

## Left near-trusses

A left near-truss $(X,[-,-,-], \cdot)$ is a set $X$ endowed with a ternary operation $[-,-,-]$ and a binary operation $\cdot$, such that $(X,[-,-,-])$ is a heap, $(X, \cdot)$ is a semigroup, and left distributivity holds, that is,

$$
x \cdot[y, z, w]=[x \cdot y, x \cdot z, x \cdot w]
$$

for every $x, y, z, w \in X$. Similarly for right near-trusses, where left distributivity is replaced by right distributivity: $[y, z, w] \cdot x=[y \cdot x, z \cdot x, w \cdot x]$ for every $x, y, z, w \in X$. Clearly, the category of left near-trusses is isomorphic to the category of right near-trusses, it suffices to associate to any left near-truss $(X,[-,-,-], \cdot)$ its opposite right near-truss $(X,[-,-,-], . \circ$. $)$.

## Examples

(1) Let $(X,[-,-,-])$ be a heap and let

$$
M(X):=\{f \mid f: X \rightarrow X\}
$$

be the set of all mappings from the set $X$ to itself.

## Examples

(1) Let $(X,[-,-,-])$ be a heap and let

$$
M(X):=\{f \mid f: X \rightarrow X\}
$$

be the set of all mappings from the set $X$ to itself. Define a ternary operation $[-,-,-$ ] on $M(X)$ setting, for every $f, g, h \in M(X),[f, g, h](x)=[f(x), g(x), h(x)]$ for all $x \in X$. Then $(M(X),[-,-,-])$ is also a heap (it is the direct product of $|X|$ copies of the heap $(X,[-,-,-]))$.

## Examples

(1) Let $(X,[-,-,-])$ be a heap and let

$$
M(X):=\{f \mid f: X \rightarrow X\}
$$

be the set of all mappings from the set $X$ to itself. Define a ternary operation $[-,-,-]$ on $M(X)$ setting, for every $f, g, h \in M(X),[f, g, h](x)=[f(x), g(x), h(x)]$ for all $x \in X$. Then $(M(X),[-,-,-])$ is also a heap (it is the direct product of $|X|$ copies of the heap $(X,[-,-,-]))$. Taking the composition of mappings as the binary operation $\cdot, M(X)$ becomes a right near-truss.

## Examples

(1) Let $(X,[-,-,-])$ be a heap and let

$$
M(X):=\{f \mid f: X \rightarrow X\}
$$

be the set of all mappings from the set $X$ to itself. Define a ternary operation $[-,-,-]$ on $M(X)$ setting, for every $f, g, h \in M(X),[f, g, h](x)=[f(x), g(x), h(x)]$ for all $x \in X$. Then $(M(X),[-,-,-])$ is also a heap (it is the direct product of $|X|$ copies of the heap $(X,[-,-,-]))$. Taking the composition of mappings as the binary operation $\cdot, M(X)$ becomes a right near-truss.
(2) Let $(N,+, \cdot)$ be a left near-ring. Define a ternary operation $[-,-,-]: N \times N \times N \rightarrow N$ on $N$ setting $[x, y, z]=x-y+z$ for every $x, y, z \in N$. Then $(N,[-,-,-], \cdot)$ is a left near-truss.

## Examples

(3) Let $(B, *, \circ)$ be a left skew brace. Define a ternary operation $[-,-,-]: B \times B \times B \rightarrow B$ on $B$ setting $[x, y, z]=x *\left(y^{-*}\right) * z$ for every $x, y, z \in B$. Then $(B,[-,-,-], \circ)$ is a left near-truss.

## Examples

The right near-truss $M(X)$ of Example (1) is particularly interesting because:

Theorem
Every right near-truss is isomorphic to a subnear-truss of $M(X)$ for some heap $X$.

Lemma
Let $(X,[-,-,-], \cdot)$ be a left near-truss and $y$ be a fixed element of $X$.
(a) If $y$ is a right zero for the semigroup $(X, \cdot)$ (that is, $x y=y$ for every $x \in X)$, then $\left(X, b_{y}, \cdot\right)$ is a left near-ring. (b) If $(X, \cdot)$ is a group and $y$ is its identity, then $\left(X, b_{y}, \cdot\right)$ is a left skew brace.

## Trusses, endomorphism trusses

A left truss $(X,[-,-,-], \circ)$ is a left near-truss for which the heap $(X,[-,-,-])$ is abelian. Similarly, a right truss $(X,[-,-,-], \circ)$ is a right near-truss for which $(X,[-,-,-])$ is an abelian heap.

## Trusses, endomorphism trusses

A left truss $(X,[-,-,-], \circ)$ is a left near-truss for which the heap $(X,[-,-,-])$ is abelian. Similarly, a right truss $(X,[-,-,-], \circ)$ is a right near-truss for which $(X,[-,-,-])$ is an abelian heap. A left truss that is also a right truss, is called a truss. Hence a truss $(X,[-,-,-], \circ)$ consists of an abelian heap $(X,[-,-,-])$, a semigroup $(X, \circ)$, and both distributivity laws hold.

The main example of ring with identity is, for any abelian group $(G,+)$, the endomorphism ring $(\operatorname{End}(G),+, \circ)$.

The main example of ring with identity is, for any abelian group $(G,+)$, the endomorphism ring $(\operatorname{End}(G),+, \circ)$. Similarly, the main example of truss is, for any abelian heap $(X,[-,-,-])$, the endomorphism truss $(\operatorname{End}(X), p, \circ)$ of $(X,[-,-,-])$. Here $\operatorname{End}(X)$ denotes the set of all heap endomorphisms of $(X,[-,-,-])$.

The main example of ring with identity is, for any abelian group $(G,+)$, the endomorphism ring $(\operatorname{End}(G),+, \circ)$. Similarly, the main example of truss is, for any abelian heap $(X,[-,-,-])$, the endomorphism truss $(\operatorname{End}(X), p, \circ)$ of $(X,[-,-,-])$. Here $\operatorname{End}(X)$ denotes the set of all heap endomorphisms of $(X,[-,-,-])$. The ternary operation $p$ on $\operatorname{End}(X)$ is defined pointwise: for every $f, g, h \in \operatorname{End}(X)$, that is, for every $f, g, h: X \rightarrow X$ that are heap endomorphisms of $X$, we have that $p(f, g, h)(x)=[f(x), g(x), h(x)]$ for every $x \in X$.

## Ideals in a left near-truss

A congruence on a left near-truss $(X,[-,-,-], \cdot)$ is an equivalence relation $\sim$ on the set $X$ such that $[x, y, z] \sim\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$ and $x y \sim x^{\prime} y^{\prime}$ for every $x, x^{\prime}, y, y^{\prime}, z, z^{\prime} \in X$ such that $x \sim x^{\prime}, y \sim y^{\prime}$ and $z \sim z^{\prime}$.

## Ideals in a left near-truss

A congruence on a left near-truss $(X,[-,-,-], \cdot)$ is an equivalence relation $\sim$ on the set $X$ such that $[x, y, z] \sim\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$ and $x y \sim x^{\prime} y^{\prime}$ for every $x, x^{\prime}, y, y^{\prime}, z, z^{\prime} \in X$ such that $x \sim x^{\prime}, y \sim y^{\prime}$ and $z \sim z^{\prime}$. Congruences on a left near-truss form a complete lattice.

## Ideals in a left near-truss

A congruence on a left near-truss $(X,[-,-,-], \cdot)$ is an equivalence relation $\sim$ on the set $X$ such that $[x, y, z] \sim\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$ and $x y \sim x^{\prime} y^{\prime}$ for every $x, x^{\prime}, y, y^{\prime}, z, z^{\prime} \in X$ such that $x \sim x^{\prime}, y \sim y^{\prime}$ and $z \sim z^{\prime}$. Congruences on a left near-truss form a complete lattice.

## Lemma

Let $(X,[-,-,-], \cdot)$ be a left near-truss. For every normal subheap $S$ of the heap $(X,[-,-,-])$, let $\sim_{S}$ be the corresponding congruence on the heap $(X,[-,-,-])$, defined, for every $x, y \in X$, by $x \sim_{s} y$ if there exists $s \in S$ such that $[x, y, s] \in S$. The following conditions are equivalent:
(a) $\sim_{S}$ is a congruence for the left near-truss $(X,[-,-,-], \cdot)$.
(b) $[x p, x q, q] \in S$ and $[[p, q, x] y, x y, q] \in S$ for every $x, y \in X$ and every $p, q \in S$.

## Ideals in a left near-truss

An ideal in a left near-truss $(X,[-,-,-], \cdot)$ is any normal subheap $S$ of $(X,[-,-,-])$ such that $[x p, x q, q] \in S$ and $[[p, q, x] y, x y, q] \in S$ for every $x, y \in X$ and every $p, q \in S$.

## Ideals in a left near-truss

An ideal in a left near-truss $(X,[-,-,-], \cdot)$ is any normal subheap $S$ of $(X,[-,-,-])$ such that $[x p, x q, q] \in S$ and $[[p, q, x] y, x y, q] \in S$ for every $x, y \in X$ and every $p, q \in S$.

## Theorem

Let $X$ be a left near-truss, $\mathcal{I}(X)$ the set of all ideals of $X$, and $\mathcal{C}(X)$ the set of all congruences of $X$. Then there is a mapping $\mathcal{I}(X) \rightarrow \mathcal{C}(X), S \mapsto \sim_{s}$, which is a surjective mapping.

## Theorem

Let $(X,[-,-,-], \cdot)$ be a left near-truss, and fix an element $y \in X$. Then $\left(X, b_{y}, \cdot\right)$ is an algebra (in the sense of Universal Algebra) in which $\left(X, b_{y}\right)$ is a group $\left(X, *_{y}\right),(X, \cdot)$ is a semigroup, and $w\left(x *_{y} z\right)=(w x) *_{y}(w y)^{-*} *_{y}(w z)$ for every $x, y, z, w \in X$. Here $(w y)^{-*}$ denotes the inverse of the element $w \cdot y$ in the group $\left(X, b_{y}\right)=\left(X, *_{y}\right)$.

## Theorem

Let $(X,[-,-,-], \cdot)$ be a left near-truss, and fix an element $y \in X$. Then $\left(X, b_{y}, \cdot\right)$ is an algebra (in the sense of Universal Algebra) in which $\left(X, b_{y}\right)$ is a group $\left(X, *_{y}\right),(X, \cdot)$ is a semigroup, and $w\left(x *_{y} z\right)=(w x) *_{y}(w y)^{-*} *_{y}(w z)$ for every $x, y, z, w \in X$. Here $(w y)^{-*}$ denotes the inverse of the element $w \cdot y$ in the group $\left(X, b_{y}\right)=\left(X, *_{y}\right)$.

In view of this theorem, it is convenient to study the structures $(X,+, \cdot)$ for which $(X,+)$ is a group, not-necessarily abelian (so that probably we should be more careful and write also here $(X,+, 0,-)$ as one does correctly in Universal Algebra), $(X, \cdot)$ is a semigroup, and $w(x+z)=w x-(w \cdot 0)+w z$.

## Theorem

Let $(X,[-,-,-], \cdot)$ be a left near-truss, and fix an element $y \in X$. Then $\left(X, b_{y}, \cdot\right)$ is an algebra (in the sense of Universal Algebra) in which $\left(X, b_{y}\right)$ is a group $\left(X, *_{y}\right),(X, \cdot)$ is a semigroup, and $w\left(x *_{y} z\right)=(w x) *_{y}(w y)^{-*} *_{y}(w z)$ for every $x, y, z, w \in X$. Here $(w y)^{-*}$ denotes the inverse of the element $w \cdot y$ in the group $\left(X, b_{y}\right)=\left(X, *_{y}\right)$.

In view of this theorem, it is convenient to study the structures $(X,+, \cdot)$ for which $(X,+)$ is a group, not-necessarily abelian (so that probably we should be more careful and write also here $(X,+, 0,-)$ as one does correctly in Universal Algebra), $(X, \cdot)$ is a semigroup, and $w(x+z)=w x-(w \cdot 0)+w z$. Let's call them $J$-rings ( $J$ for Jacobson), because our main example is, for any ring $(R,+, \cdot)$, the $J$-ring $(R,+, \circ)$, where $\circ$ is the Jacobson multiplication $x \circ y=x+y+x y$.

## $J$-rings

## Definition

A J-ring $(X,+,-, 0, \cdot)$ is a set $X$ with two binary operations + and $\cdot$, a unary operation - and a 0 -ary operation 0 satisfying:
(i) associativity of + ;
(ii) $x+0=0+x=x$ for every $x \in X$;
(iii) $x+(-x)=(-x)+x=0$ for every $x \in X$;
(iv) associativity of ;;
(v) "left weak distributivity" in the form
$z(x+y)=z x-(z \cdot 0)+z y$ for every $x, y, z \in X$.

## Ideals in a J-ring

An ideal $I$ in a $J$-ring $(X,+, \cdot)$ is a normal subgroup $N$ of the group $(X,+)$ such that $x n-x \cdot 0 \in N$ and $(x+n) y-x y \in N$ for every $x, y \in X$ and every $n \in N$.

## Ideals in a J-ring

An ideal $I$ in a $J$-ring $(X,+, \cdot)$ is a normal subgroup $N$ of the group $(X,+)$ such that $x n-x \cdot 0 \in N$ and $(x+n) y-x y \in N$ for every $x, y \in X$ and every $n \in N$.

## Lemma

Let $(X,[-,-,-], \cdot)$ be a left near-truss and let e be an element of $X$. Then there is a lattice isomorphism between the lattice of all ideals of the J-ring $\left(X, b_{e}, \cdot\right)$ and the lattice of all congruences on $(X,[-,-,-], \cdot)$. This correspondence associates with every ideal $N$ of the J-ring $\left(X, b_{e}, \cdot\right)$ the congruence $\sim_{N}$ on $(X,[-,-,-], \cdot)$ defined, for every $x, y \in X$, by $x \sim_{N} y$ if $x-y \in N$. Conversely, it associates to any congruence $\sim$ on $(X,[-,-,-], \cdot)$ the equivalence class $[e]_{\sim}$ of e modulo $\sim$.

Huq commutator and Smith commutator for left near-trusses, idempotent endomorphisms and semidirect product of left near-trusses, derivations of trusses, ...

## The Baer-Kaplansky theorem

Theorem
[Baer 1943, Kaplansky1952)] Two torsion abelian groups $G$ and $H$ are isomorphic if and only if their endomorphism rings $\operatorname{End}(G)$ and $\operatorname{End}(H)$ are isomorphic.

## The Baer-Kaplansky theorem

Theorem
[Baer 1943, Kaplansky1952)] Two torsion abelian groups $G$ and $H$ are isomorphic if and only if their endomorphism rings $\operatorname{End}(G)$ and $\operatorname{End}(H)$ are isomorphic.
Moreover, for every ring isomorphism $\Phi: \operatorname{End}(G) \rightarrow \operatorname{End}(H)$ there exists a unique group isomorphism $\varphi: G \rightarrow H$ such that $\Phi(\alpha)=\varphi \alpha \varphi^{-1}$ for every $\alpha \in \operatorname{End}(G)$.

## The Baer-Kaplansky theorem

It is still unknown wither this is true for all abelian groups. More generally, it is still unknown when a right module $M$ over an associative ring $R$ is uniquely determined, up to isomorphism, by the ring $\operatorname{End}\left(M_{R}\right)$ of all its $R$-endomorphisms.

## The Baer-Kaplansky theorem

Theorem
[Breaz and Brzeziński, 2022] Two abelian groups $G$ and $H$ are isomorphic if and only if their endomorphism trusses End Heap $(G)$ and $\operatorname{End}_{\text {Heap }}(H)$ are isomorphic. Moreover, for every truss isomorphism $\Phi: \operatorname{End}_{\text {Heap }}(G) \rightarrow \operatorname{End}_{\text {Heap }}(H)$, there exists a unique heap isomorphism $\varphi: G \rightarrow H$ such that $\Phi(\alpha)=\varphi \alpha \varphi^{-1}$ for every $\alpha \in \operatorname{End}_{\text {Heap }}(G)$.

